Reutilización de aguas negras mediante un sistema de biofiltros en el cementerio ecológico de Huancayo, 2021
Resumen
Palabras clave
Texto completo:
PDFReferencias
Abbood, D. W., Ahmed, E., & Gubashi, K. R. (2018). Hospital wastewater treatment using mixed media biofilter. Int J Civil Eng Technol. 9(5), 1188–1201. Disponible en: https://micromanagementinc.com/clients/hospitals/?gclid=Cj0KCQiA-oqdBhDfARIsAO0TrGEdPG_Vp0_zE6w60_wnF6XMpWOkfN_jwTWexMYR8kmihTKunou45j0aAi02EALw_wcB. Acceso agosto 2022.
Abedi, T., & Mojiri, A, (2019). Constructed wetland modified by biochar/zeolite addition for enhanced wastewater treatment. Environ. Technol. Innov. 16, 100472. https://doi.org/10.1016/j.eti.2019.100472.
Ahmed, E., Pramanik, B. K., Fatihah, S., & Shahrom, Z. (2012). Biological aerated filters (BAFs) for carbon and nitrogen removal: a review. J Eng Sci Technol, 7(4), 428–446. Disponible en: https://jestec.taylors.edu.my/Vol%207%20Issue%204%20August%2012/Vol_7_4_428-446_%20PRAMANIK%20BIPLOB.pdf (Acceso agosto 2022.
Al-Wasify, R. S., Ali, M. N., & Hamed, S. R. (2017). Biodegradation of dairy wastewater using bacterial and fungal local isolates. Water science and technology : a journal of the International Association on Water Pollution Research, 76(11-12), 3094–3100. https://doi.org/10.2166/wst.2017.481.
Borkar, R. P., Gulhane, M. L., & Kotangale, A. J. (2013). Moving bed biofilm reactor—a new perspective in wastewater treatment. IOSR J Environ Sci, Toxicol Food Technol, 6(6), 15–21. Disponible en: https://www.iosrjournals.org/iosr-jestft/papers/vol6-issue6/C0661521.pdf (Acceso agosto 2022.
Chandana Lakshmi, M., Harsha, N., Kumar, K. V., Rani, K., & Sridevi, V. (2013). Biofiltration and its application in treatment of air and water pollutants—a review. Int J Appl Innov Eng Manag 2(9), 226–231. Disponible en: https://www.ijaiem.org/volume2issue9/IJAIEM-2013-09-24-055.pdf Acceso agosto 2022.
Chang, J., Mei, J., Jia, W., Chen, J., Li, X., Ji, B., & Wu, H. (2019). Treatment of heavily polluted river water by tidal-operated biofilters with organic/inorganic media: Evaluation of performance and bacterial community. Bioresource technology, 279, 34–42. https://doi.org/10.1016/j.biortech.2019.01.060.
D.S. N° 003-2010-MINAM (Disponible en: https://www.minam.gob.pe/disposiciones/decreto-supremo-n-003-2010-minam/. Acceso agosto 2022.
Feng, L., Jia, L., Wang, R., & Wu, H. (2020). Can biochar application improve nitrogen removal in constructed wetlands for treating anaerobically-digested swine wastewater? Chem. Eng. J., 379, 122273. http://dx.doi.org/10.1016/j.cej.2019.122273.
Garkal, D. J., Mapara, J. V., & Mandar, P. (2015). Domestic wastewater treatment by bio-filtration: a case study. Int J Sci, Environ Technol 4(1), 140–5. Disponible en: https://www.ijset.net/journal/524.pdf Acceso agosto 2022.
Gogina, E., & Yantsen, O. (2018). Modeling of processes of wastewater treatment from nitrogen compounds in the trickling biofilter. MATEC Web of Conferences, 251, 03041 IPICSE-2018.
Greenstein, K. E., Lew, J., Dickenson, E. R. V., & Wert, E. C. (2018). Investigation of biotransformation, sorption, and desorption of multiple chemical contaminants in pilot-scale drinking water biofilters. Chemosphere, 200, 248–256. https://doi.org/10.1016/j.chemosphere.2018.02.107.
Gwenzi, W., Chaukura, N., Noubactep, C., & Mukome, F. N. D. (2017). Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of environmental management, 197, 732–749. https://doi.org/10.1016/j.jenvman.2017.03.087.
Hidalgo, C. (2018). Propuesta de Diseño de una Planta de Tratamiento de Aguas Residuales. Lima: Universidad César Vallejo. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/26755. Acceso agosto 2022.
Ji, B., Liu, R., Ren, B., Zhao, Y., & Wei, T, (2020). Constructed treatment wetland: glance of development and future perspectives. Water Cycle, 1, 104e112. https://doi.org/10.3390/pr9111917.
Jia, L., Liu, H., Kong, Q., Li, M., Wu, S., & Wu, H. (2020). Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater. Water research, 169, 115285. https://doi.org/10.1016/j.watres.2019.115285.
Jia, W., Sun, X., Gao, Y., Yang, Y., & Yang, L. (2020). Fe-modified biochar enhances microbial nitrogen removal capability of constructed wetland. The Science of the total environment, 740, 139534. https://doi.org/10.1016/j.scitotenv.2020.139534.
Kaetzl, K., Lübken, M., Uzun, G., Gehring, T., Nettmann, E., Stenchly, K., & Wichern, M. (2019). On-farm wastewater treatment using biochar from local agroresidues reduces pathogens from irrigation water for safer food production in developing countries. The Science of the total environment, 682, 601–610. https://doi.org/10.1016/j.scitotenv.2019.05.142.
Kosolapov, D. B., Kuschk, P., Müller, R. A., Vainshtein, M. B., Vatsourina, A. V., Wiessner, A., & K€ astner, M. (2004). Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng. Life Sci., 4(5), 403e411. https://doi.org/10.1002/ELSC.200420048.
Lau, A. Y., Tsang, D. C., Graham, N. J., Ok, Y. S., Yang, X., & Li, X. D. (2017). Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater. Chemosphere, 169, 89–98. https://doi.org/10.1016/j.chemosphere.2016.11.048.
Li, Q., Yu, S., Li, L., Liu, G., Gu, Z., Liu, M., Liu, Z., Ye, Y., Xia, Q., & Ren, L. (2017). Microbial Communities Shaped by Treatment Processes in a Drinking Water Treatment Plant and Their Contribution and Threat to Drinking Water Safety. Frontiers in microbiology, 8, 2465. https://doi.org/10.3389/fmicb.2017.02465.
Liu, Q., Zhou, Y., Chen, L., & Zheng, X. (2010). Application of MBR for hospital wastewater treatment in China. Desalination, 250(2), 605–608. https://doi.org/10.1016/j.desal.2009.09.033.
Lopez, L (2015). Planta de tratamiento de aguas residuales para reuso en riego de parques y jardines en el Distrito de la Esperanza provincia Trujillo. La Libertad. Trujillo. Disponible en: epositorio.upao.edu.pe/bitstream/20.500.12759/1981/1/REP_ING.CIVIL_RODRIGO.LOPEZ_KATHLEEN.HERRERA_PLANTA.TRATAMIENTO.AGUAS.RESIDUALES.REUSO.RIEGO.PARQUES.JARDINES.DISTRITO.LA.ESPERANZA.TRUJILLO.LA.LIBERTAD.pdf. Acceso diciembre 2022.
Lopez, L. (2015). Planta de tratamiento de aguas residuales para reuso en riego de parques y jardines en el Distrito de la Esperanza provincia Trujillo. La Libertad. Trujillo. Disponible en: https://repositorio.upao.edu.pe/bitstream/20.500.12759/1981/1/REP_ING.CIVIL_RODRIGO.LOPEZ_KATHLEEN.HERRERA_PLANTA.TRATAMIENTO.AGUAS.RESIDUALES.REUSO.RIEGO.PARQUES.JARDINES.DISTRITO.LA.ESPERANZA.TRUJILLO.LA.LIBERTAD.pdf. Acceso agosto 2022.
Mahvi, A. H., Naddafi, K., Naghizadeh, A., & Vaezi, F. (2008). Evaluation of hollow fiber membrane bioreactor efficiency for municipal wastewater treatment. Iran J Environ Health Sci Eng 5(4), 257–268. https://doi.org/10.2166/wst.2017.481.
Mane, A. V., Porwal, H. J., & Velhal, S. G. (2015). Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Res Ind, 9, 1–15. https://doi.org/10.1016/j.wri.2014.11.002.
Mesdaghinia, A., Mahvi, A., Saeedi, R., & Pishrafti, H. (2010). Upflow Sludge Blanket Filtration (USBF): an Innovative Technology in Activated Sludge Process. Iranian journal of public health, 39(2), 7–12. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23113000/ Acceso agosto 2022.
Quispe Pulido, A., & Casimiro Vidal, W. (2019). Evaluación de la eficiencia entre dos sistemas de biofiltros para el tratamiento de las aguas residuales domesticas de la localidad de Carapongo, Lurigancho-Chosica. Cátedra Villarreal, 7(1), 66–83. https://doi.org/10.24039/cv201971325.
Rivera Vergara, D. A. (2016). Humedales de flujo subsuperficial como biofiltros de aguas residuales en Colombia. Cuaderno Activa, 7(1), 99–108. Disponible en: https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/25. Acceso agosto 2022.
Tonon, D., Tonetti, A. L., Coraucci Filho, B., & Bueno, D. (2015). Wastewater treatment by anaerobic filter and sand filter: hydraulic loading rates for removing organic matter, phosphorus, pathogens and nitrogen in tropical countries. Ecol Eng 82, 583–592. Disponible en: https://www.semanticscholar.org/paper/Wastewater-treatment-by-anaerobic-filter-and-sand-Tonon-Tonetti/3b082277818afac9ac82d0508c5bdd10acee9d26. Acceso agosto 2022.
Tripathia, S. & Hussain, T. (2022). Biofiltration treatment of wastewater through microbial ecology. In book: An Innovative Role of Biofiltration in Wastewater Treatment Plants (WWTPs), 19-44. http://dx.doi.org/10.1016/B978-0-12-823946-9.00005-X.
Vasquez, S. 2017). Análisis de la eficiencia de un prototipo de Biofiltro en el tratamiento de aguas residuales para riego en Trapiche, Comas, 2017. Universidad César Vallejo. Disponible en: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/22235/Vasquez_PSJ.pdf?sequence=1&isAllowed=y. Acceso agosto 2022.
Vymazal, (2011). Op. Cit.; Kumar, S., & Dutta, V. (2019). Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: an overview. Environmental science and pollution research international, 26(12), 11662–11673. https://doi.org/10.1007/s11356-019-04816-9.
Vymazal, J. (2011). Constructed wetlands for wastewater treatment: five decades of experience. Environmental science & technology, 45(1), 61–69. https://doi.org/10.1021/es101403q.
Vymazal, J., & Březinová, T. (2015). The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environment international, 75, 11–20. https://doi.org/10.1016/j.envint.2014.10.026.
WSP-LAC. (2006). Biofiltro: Una opción sostenible para el tratamiento de aguas residuales en pequeñas localidades, Disponible en:
Zerbini, T., Gianvecchio, V. A. P., Regina, D., Tsujimoto, T., Ritter, V., & Singer, J. M. (2018). Suicides by hanging and its association with meteorological conditions in São Paulo. Journal of forensic and legal medicine, 53, 22–24. https://doi.org/10.1016/j.jflm.2017.10.010.
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2023 Boletín de Malariología y Salud Ambiental