Saneamiento industrial: Biodisponibilidad de patógenos en superficies

Roberto Carlos Dávila Morán, Eucaris del Carmen Agüero Corzo, Jose Leonor Ruiz Nizama, Hector Portillo Rios, Leonardo Velarde Dávila

Resumen


En condiciones adecuadas como humedad, alcalinidad, o temperatura, determinados patógenos logran adherirse a las superficies y sobrevivir ciertos períodos fuera de un anfitrión, persistiendo en algunos casos a procesos deficientes de limpieza y desinfección, configurándose como un posible foco de transmisión. Por ello, el correcto saneamiento cumple un propósito vital en la protección de los trabajadores de la industria y otros sectores frente al riesgo de contaminación por contacto directo con las superficies contaminadas. La literatura científica muestra amplia evidencia de la supervivencia de patógenos sobre superficies que son habituales dentro de instalaciones industriales, como acero, aluminio, madera, plástico y vidrio. la supervivencia de microorganismos en las superficies puede configurarse como candidato a marcador de biodisponibilidad, que puede ser usado en la industria para establecer y auditar los planes de higienización y saneamiento industrial, permitiendo estudiar la eficacia de los compuestos usados en la desinfección, y variables como su concentración, temperatura, e intervalos de aplicación y remoción.

Palabras clave


Biodisponibilidad, Saneamiento industrial, patógenos, superficies

Texto completo:

PDF

Referencias


Abad, F. X., Pintó, R. M., & Bosch, A. (1994). Survival of enteric viruses on environmental fomites. Applied and environmental microbiology, 60(10), 3704–3710. https://doi.org/10.1128/aem.60.10.3704-3710.1994

Abdelhamid, A. G., & Yousef, A. E. (2019). The Microbial Lipopeptide Paenibacterin Disrupts Desiccation Resistance in Salmonella enterica Serovars Tennessee and Eimsbuettel. Applied and environmental microbiology, 85(14), e00739-19. https://doi.org/10.1128/AEM.00739-19

Abrishami S., Tall B., Bruursema T., Epstein P., & Shah D. (1994). Bacterial Adherence and Viability on cutting board surfaces. J. Food Saf. 14, 153–172. https://doi.org/10.1111/j.1745-4565.1994.tb00591.x

Ak, N. O., Cliver, D. O., & Kaspar, C. W. (1994). Decontamination of Plastic and Wooden Cutting Boards for Kitchen Use. Journal of food protection, 57(1), 23–30. https://doi.org/10.4315/0362-028X-57.1.23

An, Y. H. & Friedman, R. J. (1998). Consice review of mechanisms of bacterial adhesion to biomaterial surfaces. Journal of Biomedical Materials Research, 43(3), 338-348. https://doi.org/10.1002/(SICI)1097-4636(199823)43:3%3C338::AID-JBM16%3E3.0.CO;2-B

Arthur, S. E., & Gibson, K. E. (2016). Environmental persistence of Tulane virus - a surrogate for human norovirus. Canadian journal of microbiology, 62(5), 449–454. https://doi.org/10.1139/cjm-2015-0756

Bale, M. J., Bennett, P. M., Beringer, J. E., & Hinton, M. (1993). The survival of bacteria exposed to desiccation on surfaces associated with farm buildings. The Journal of applied bacteriology, 75(6), 519–528. https://doi.org/10.1111/j.1365-2672.1993.tb01589.x

Barre-Sinoussi, F., Nugeyre, M. T., & Chermann, J. C. (1985). Resistance of AIDS virus at room temperature. Lancet (London, England), 2(8457), 721–722. https://doi.org/10.1016/s0140-6736(85)92955-1

Bean, B., Moore, B. M., Sterner, B., Peterson, L. R., Gerding, D. N., & Balfour, H. H., Jr (1982). Survival of influenza viruses on environmental surfaces. The Journal of infectious diseases, 146(1), 47–51. https://doi.org/10.1093/infdis/146.1.47

Brady, M. T., Evans, J., & Cuartas, J. (1990). Survival and disinfection of parainfluenza viruses on environmental surfaces. American journal of infection control, 18(1), 18–23. https://doi.org/10.1016/0196-6553(90)90206-8

Buckley, D., Fraser, A., Huang, G., & Jiang, X. (2017). Recovery Optimization and Survival of the Human Norovirus Surrogates Feline Calicivirus and Murine Norovirus on Carpet. Applied and environmental microbiology, 83(22), e01336-17. https://doi.org/10.1128/AEM.01336-17

Buggy, B. P., Wilson, K. H., & Fekety, R. (1983). Comparison of methods for recovery of Clostridium difficile from an environmental surface. Journal of clinical microbiology, 18(2), 348–352. https://doi.org/10.1128/jcm.18.2.348-352.1983

Chaibenjawong, P., & Foster, S. J. (2011). Desiccation tolerance in Staphylococcus aureus. Archives of microbiology, 193(2), 125–135. https://doi.org/10.1007/s00203-010-0653-x

Chan, K. H., Peiris, J. S., Lam, S. Y., Poon, L. L., Yuen, K. Y., & Seto, W. H. (2011). The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Advances in virology, 734690. https://doi.org/10.1155/2011/734690

Chin A.W.H., Chu J.T.S., Perera M.R.A., Hui K.P.Y., Yen H.-L., Chan M.C.W., Peiris M., & Poon L.L.M. (2020). Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe, 1,e10. https://doi.org/10.1016/S2666-5247(20)30003-3

Chmielewski, R. & Frank, J. 2003. Biofilm Formation and Control in Food Processing Facilities. Comprehensive Reviews in Food Science and Food Safety, 2(1), 22-32. https://doi.org/10.1111/j.1541-4337.2003.tb00012.x

Clay, S., Maherchandani, S., Malik, Y. S., & Goyal, S. M. (2006). Survival on uncommon fomites of feline calicivirus, a surrogate of noroviruses. American journal of infection control, 34(1), 41–43. https://doi.org/10.1016/j.ajic.2005.05.013

Dávila Morán, R. C., Corzo, E. D. C. A., Pedraza, F. R. G., Santa Cruz, S. M. P., Dávila, L. V., & Rios, H. P. (2021). Auditoria de higiene en instalaciones de la industria textil frente al covid-19. Boletín de Malariología y Salud Ambiental, 61(3), 527-532. https://doi.org/10.52808/bmsa.7e5.613.019

Daneshvar Alavi, H. E., & Truelstrup Hansen, L. (2013). Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces. Biofouling, 29(10), 1253–1268. https://doi.org/10.1080/08927014.2013.835805

Doerrbecker, J., Friesland, M., Ciesek, S., Erichsen, T. J., Mateu-Gelabert, P., Steinmann, J., Steinmann, J., Pietschmann, T., & Steinmann, E. (2011). Inactivation and survival of hepatitis C virus on inanimate surfaces. The Journal of infectious diseases, 204(12), 1830–1838. https://doi.org/10.1093/infdis/jir535

D'Souza, D. H., Sair, A., Williams, K., Papafragkou, E., Jean, J., Moore, C., & Jaykus, L. (2006). Persistence of caliciviruses on environmental surfaces and their transfer to food. International journal of food microbiology, 108(1), 84–91. https://doi.org/10.1016/j.ijfoodmicro.2005.10.024

Esteves, D. C., Pereira, V. C., Souza, J. M., Keller, R., Simões, R. D., Winkelstroter Eller, L. K., & Rodrigues, M. V. (2016). Influence of biological fluids in bacterial viability on different hospital surfaces and fomites. American journal of infection control, 44(3), 311–314. https://doi.org/10.1016/j.ajic.2015.09.033

Farrow, J. M., 3rd, Wells, G., & Pesci, E. C. (2018). Desiccation tolerance in Acinetobacter baumannii is mediated by the two-component response regulator BfmR. PloS one, 13(10), e0205638. https://doi.org/10.1371/journal.pone.0205638

Favero, M. S., Bond, W. W., Petersen, N. J., Berquist, K. R., & Maynard, J. E. (1974). Detection methods for study of the stability of hepatitis B antigen on surfaces. The Journal of infectious diseases, 129(2), 210–212. https://doi.org/10.1093/infdis/129.2.210

Finn, S., Händler, K., Condell, O., Colgan, A., Cooney, S., McClure, P., Amézquita, A., Hinton, J. C., & Fanning, S. (2013). ProP is required for the survival of desiccated Salmonella enterica serovar typhimurium cells on a stainless steel surface. Applied and environmental microbiology, 79(14), 4376–4384. https://doi.org/10.1128/AEM.00515-13

Firquet, S., Beaujard, S., Lobert, P. E., Sané, F., Caloone, D., Izard, D., & Hober, D. (2015). Survival of Enveloped and Non-Enveloped Viruses on Inanimate Surfaces. Microbes and environments, 30(2), 140–144. https://doi.org/10.1264/jsme2.ME14145

Fu, E., McCue, K., & Boesenberg, D. (2007). Chemical Disinfection of Hard Surfaces Household, Industrial and Institutional Settings. En: Johansson, I. y Somasundaran P. (Eds.), Handbook for cleaning/decontamination of surfaces, pg. 573-592. http://dx.doi.org/10.1016/B978-044451664-0/50017-6

Getchell-White, S. I., Donowitz, L. G., & Gröschel, D. H. (1989). The inanimate environment of an intensive care unit as a potential source of nosocomial bacteria: evidence for long survival of Acinetobacter calcoaceticus. Infection control and hospital epidemiology, 10(9), 402–407. Disponible en: https://pubmed.ncbi.nlm.nih.gov/2794465/ (Acceso mayo 2021).

Gordon, Y. J., Gordon, R. Y., Romanowski, E., & Araullo-Cruz, T. P. (1993). Prolonged recovery of desiccated adenoviral serotypes 5, 8, and 19 from plastic and metal surfaces in vitro. Ophthalmology, 100(12), 1835–1840. https://doi.org/10.1016/s0161-6420(93)31389-8

Greatorex, J. S., Digard, P., Curran, M. D., Moynihan, R., Wensley, H., Wreghitt, T., Varsani, H., Garcia, F., Enstone, J., & Nguyen-Van-Tam, J. S. (2011). Survival of influenza A(H1N1) on materials found in households: implications for infection control. PloS one, 6(11), e27932. https://doi.org/10.1371/journal.pone.0027932

Greene, C., Vadlamudi, G., Newton, D., Foxman, B., & Xi, C. (2016). The influence of biofilm formation and multidrug resistance on environmental survival of clinical and environmental isolates of Acinetobacter baumannii. American journal of infection control, 44(5), e65–e71. https://doi.org/10.1016/j.ajic.2015.12.012

Hahn, H., Kaufmann, S. H., Schulz, T. F., & Suerbaum, S. (2009). Medizinische mikrobiologie und infektiologie. Springer-Verlag. Disponible en: https://books.google.com/books?hl=es&lr=&id=434hBAAAQBAJ&oi=fnd&pg=PR18&ots=18zFtEDzkE&sig=qFOhuJAfgQCum7oea0OLYT9yX_g (Acceso mayo 2021)

Hall, C.B., Douglas, R.G., Jr & Geiman, J.M. (1980). Posible transmisión por fómites del virus respiratorio sincitial. Revista de enfermedades infecciosas, 141 (1), 98-102. https://doi.org/10.1093/infdis/141.1.98

Hansen, L. T., & Vogel, B. F. (2011). Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: Survival and transfer to salmon products. International journal of food microbiology, 146(1), 88–93. https://doi.org/10.1016/j.ijfoodmicro.2011.01.032

Helke, D. M., & Wong, A. (1994). Survival and Growth Characteristics of Listeria monocytogenes and Salmonella typhimurium on Stainless Steel and Buna-N Rubber. Journal of food protection, 57(11), 963–968. https://doi.org/10.4315/0362-028X-57.11.963

Herrera Zúñiga, J. S. (2016). Efecto bactericida de desinfectantes sobre cepas de Escherichia coli y Listeria innocua en superficies de uso en la Industria Alimentaria. Disponible en: http://repositorio.uchile.cl/handle/2250/142693 (Acceso junio 2021).

Hirai Y. (1991). Survival of bacteria under dry conditions; from a viewpoint of nosocomial infection. The Journal of hospital infection, 19(3), 191–200. https://doi.org/10.1016/0195-6701(91)90223-u

Hokunan, H., Koyama, K., Hasegawa, M., Kawamura, S., & Koseki, S. (2016). Survival Kinetics of Salmonella enterica and Enterohemorrhagic Escherichia coli on a Plastic Surface at Low Relative Humidity and on Low-Water Activity Foods. Journal of food protection, 79(10), 1680–1692. https://doi.org/10.4315/0362-028X.JFP-16-081

Ingham, S. C., Wadhera, R. K., Chu, C. H., & DeVita, M. D. (2006). Survival of Streptococcus pyogenes on foods and food contact surfaces. Journal of food protection, 69(5), 1159–1163. https://doi.org/10.4315/0362-028x-69.5.1159

Islam, M. S., Hossain, M. A., Khan, S. I., Khan, M. N., Sack, R. B., Albert, M. J., Huq, A., & Colwell, R. R. (2001). Survival of Shigella dysenteriae type 1 on fomites. Journal of health, population, and nutrition, 19(3), 177–182. Disponible en: https://www.jstor.org/stable/23498857 (Acceso abril 2021)

Jawad, A., Heritage, J., Snelling, A. M., Gascoyne-Binzi, D. M., & Hawkey, P. M. (1996). Influence of relative humidity and suspending menstrua on survival of Acinetobacter spp. on dry surfaces. Journal of clinical microbiology, 34(12), 2881–2887. https://doi.org/10.1128/jcm.34.12.2881-2887.1996

Jawad, A., Seifert, H., Snelling, A. M., Heritage, J., & Hawkey, P. M. (1998b). Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. Journal of clinical microbiology, 36(7), 1938–1941. https://doi.org/10.1128/JCM.36.7.1938-1941.1998

Jawad, A., Snelling, A. M., Heritage, J., & Hawkey, P. M. (1998a). Exceptional desiccation tolerance of Acinetobacter radioresistens. The Journal of hospital infection, 39(3), 235–240. https://doi.org/10.1016/s0195-6701(98)90263-8

Jump, R. L., Pultz, M. J., & Donskey, C. J. (2007). Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea?. Antimicrobial agents and chemotherapy, 51(8), 2883–2887. https://doi.org/10.1128/AAC.01443-06

Kampf, G., Dietze, B., Grosse-Siestrup, C., Wendt, C., & Martiny, H. (1998). Microbicidal activity of a new silver-containing polymer, SPI-ARGENT II. Antimicrobial agents and chemotherapy, 42(9), 2440–2442. https://doi.org/10.1128/AAC.42.9.2440

Kim, S. J., Si, J., Lee, J. E., & Ko, G. (2012). Temperature and humidity influences on inactivation kinetics of enteric viruses on surfaces. Environmental science & technology, 46(24), 13303–13310. https://doi.org/10.1021/es3032105

Koca, O., Altoparlak, U., Ayyildiz, A., & Kaynar, H. (2012). Persistence of nosocomial pathogens on various fabrics. The Eurasian journal of medicine, 44(1), 28–31. https://doi.org/10.5152/eajm.2012.06

Kratzel, A., Steiner, S., Todt, D., V'kovski, P., Brueggemann, Y., Steinmann, J., Steinmann, E., Thiel, V., & Pfaender, S. (2020). Temperature-dependent surface stability of SARS-CoV-2. The Journal of infection, 81(3), 452–482. https://doi.org/10.1016/j.jinf.2020.05.074

Kumar, C. G. & Anand, S. K. (1998). Significance of microbial biofilms in food industry: a review. International Journal of Food Microbiology 42 (1-2), 9-27. https://doi.org/10.1016/S0168-1605(98)00060-9

Kusumaningrum, H. D., Riboldi, G., Hazeleger, W. C., & Beumer, R. R. (2003). Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. International journal of food microbiology, 85(3), 227–236. https://doi.org/10.1016/s0168-1605(02)00540-8

Lai, M. Y., Cheng, P. K., & Lim, W. W. (2005). Survival of severe acute respiratory syndrome coronavirus. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 41(7), e67–e71. https://doi.org/10.1086/433186

Macgregor-Skinner, G. (2021). Muéstrame la ciencia: la contaminación de superficies y manos. Advancing Clean Driving Innovation. Disponible en: https://latam.issa.com/articles/muestrame-la-ciencia-la-contaminacion-de-superficies-y-manos (Acceso junio 2021).

Mahl, M. C., & Sadler, C. (1975). Virus survival on inanimate surfaces. Canadian journal of microbiology, 21(6), 819–823. https://doi.org/10.1139/m75-121

Margas, E., Meneses, N., Conde-Petit, B., Dodd, C. E., & Holah, J. (2014). Survival and death kinetics of Salmonella strains at low relative humidity, attached to stainless steel surfaces. International journal of food microbiology, 187, 33–40. https://doi.org/10.1016/j.ijfoodmicro.2014.06.027

Marks, L. R., Reddinger, R. M., & Hakansson, A. P. (2014). Biofilm formation enhances fomite survival of Streptococcus pneumoniae and Streptococcus pyogenes. Infection and immunity, 82(3), 1141–1146. https://doi.org/10.1128/IAI.01310-13

Maule A. (2000). Survival of verocytotoxigenic Escherichia coli O157 in soil, water and on surfaces. Symposium series (Society for Applied Microbiology), (29), 71S–78S. https://doi.org/10.1111/j.1365-2672.2000.tb05334.x

Mbithi, J. N., Springthorpe, V. S., & Sattar, S. A. (1991). Effect of relative humidity and air temperature on survival of hepatitis A virus on environmental surfaces. Applied and environmental microbiology, 57(5), 1394–1399. https://doi.org/10.1128/aem.57.5.1394-1399.1991

Moe, K., & Shirley, J. A. (1982). The effects of relative humidity and temperature on the survival of human rotavirus in faeces. Archives of virology, 72(3), 179–186. https://doi.org/10.1007/BF01348963

Musa, E. K., Desai, N., & Casewell, M. W. (1990). The survival of Acinetobacter calcoaceticus inoculated on fingertips and on formica. The Journal of hospital infection, 15(3), 219–227. https://doi.org/10.1016/0195-6701(90)90029-n

Neely A. N. (2000). A survey of gram-negative bacteria survival on hospital fabrics and plastics. The Journal of burn care & rehabilitation, 21(6), 523–527. https://doi.org/10.1097/00004630-200021060-00009

Neely, A. N., & Maley, M. P. (2000). Survival of enterococci and staphylococci on hospital fabrics and plastic. Journal of clinical microbiology, 38(2), 724–726. https://doi.org/10.1128/JCM.38.2.724-726.2000

Neely, A. N., & Orloff, M. M. (2001). Survival of some medically important fungi on hospital fabrics and plastics. Journal of clinical microbiology, 39(9), 3360–3361. https://doi.org/10.1128/JCM.39.9.3360-3361.2001

Nerurkar, L. S., West, F., May, M., Madden, D. L., & Sever, J. L. (1983). Survival of herpes simplex virus in water specimens collected from hot tubs in spa facilities and on plastic surfaces. JAMA, 250(22), 3081–3083. Disponible en: https://pubmed.ncbi.nlm.nih.gov/6315978/ (Acceso mayo 2021).

Noyce, J. O., Michels, H., & Keevil, C. W. (2006). Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. The Journal of hospital infection, 63(3), 289–297. https://doi.org/10.1016/j.jhin.2005.12.008

OIT. (2012). Enciclopedia de salud y seguridad en el trabajo, capítulo 30: Higiene industrial. pp. 30.2. Disponible en: https://www.insst.es/documents/94886/161958/Cap%C3%ADtulo+30.+Higiene+industrial (Acceso mayo 2021).

Oosterom, J., DE Wilde, G., DE Boer, E., DE Blaauw, L. H., & Karman, H. (1983). Survival of Campylobacter jejuni during Poultry Processing and Pig Slaughtering. Journal of food protection, 46(8), 702–706. https://doi.org/10.4315/0362-028X-46.8.702

Otter, J. A., & French, G. L. (2009). Survival of nosocomial bacteria and spores on surfaces and inactivation by hydrogen peroxide vapor. Journal of clinical microbiology, 47(1), 205–207. https://doi.org/10.1128/JCM.02004-08

Paintsil, E., Binka, M., Patel, A., Lindenbach, B. D., & Heimer, R. (2014). Hepatitis C virus maintains infectivity for weeks after drying on inanimate surfaces at room temperature: implications for risks of transmission. The Journal of infectious diseases, 209(8), 1205–1211. https://doi.org/10.1093/infdis/jit648

Pérez, J. L., Gómez, E., & Sauca, G. (1990). Survival of gonococci from urethral discharge on fomites. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 9(1), 54–55. https://doi.org/10.1007/BF01969538

Perry, K. A., Coulliette, A. D., Rose, L. J., Shams, A. M., Edwards, J. R., & Noble-Wang, J. A. (2016). Persistence of Influenza A (H1N1) Virus on Stainless Steel Surfaces. Applied and environmental microbiology, 82(11), 3239–3245. https://doi.org/10.1128/AEM.04046-15

Piedrahita, C. T., Cadnum, J. L., Jencson, A. L., Shaikh, A. A., Ghannoum, M. A., & Donskey, C. J. (2017). Environmental Surfaces in Healthcare Facilities are a Potential Source for Transmission of Candida auris and Other Candida Species. Infection control and hospital epidemiology, 38(9), 1107–1109. https://doi.org/10.1017/ice.2017.127

Quaranta, D., Krans, T., Espírito Santo, C., Elowsky, C. G., Domaille, D. W., Chang, C. J., & Grass, G. (2011). Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Applied and environmental microbiology, 77(2), 416–426. https://doi.org/10.1128/AEM.01704-10

Rabenau, H. F., Cinatl, J., Morgenstern, B., Bauer, G., Preiser, W., & Doerr, H. W. (2005). Stability and inactivation of SARS coronavirus. Medical microbiology and immunology, 194(1-2), 1–6. https://doi.org/10.1007/s00430-004-0219-0

Rangel-Frausto, M. S., Houston, A. K., Bale, M. J., Fu, C., & Wenzel, R. P. (1994). An experimental model for study of Candida survival and transmission in human volunteers. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 13(7), 590–595. https://doi.org/10.1007/BF01971311

Reij, M. W., Den Aantrekker, E. D., & ILSI Europe Risk Analysis in Microbiology Task Force (2004). Recontamination as a source of pathogens in processed foods. International journal of food microbiology, 91(1), 1–11. https://doi.org/10.1016/S0168-1605(03)00295-2

Richter, W. R., Sunderman, M. M., Wendling, M., Serre, S., Mickelsen, L., Rupert, R., Wood, J., Choi, Y., Willenberg, Z., & Calfee, M. W. (2020). Evaluation of altered environmental conditions as a decontamination approach for nonspore-forming biological agents. Journal of applied microbiology, 128(4), 1050–1059. https://doi.org/10.1111/jam.14532

Roden, R. B., Lowy, D. R., & Schiller, J. T. (1997). Papillomavirus is resistant to desiccation. The Journal of infectious diseases, 176(4), 1076–1079. https://doi.org/10.1086/516515

Samson, R. A., Visagie, C. M., Houbraken, J., Hong, S. B., Hubka, V., Klaassen, C. H., Perrone, G., Seifert, K. A., Susca, A., Tanney, J. B., Varga, J., Kocsubé, S., Szigeti, G., Yaguchi, T., & Frisvad, J. C. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in mycology, 78,141–173. https://doi.org/10.1016/j.simyco.2014.07.004

Sattar, S. A., Karim, Y. G., Springthorpe, V. S., & Johnson-Lussenburg, C. M. (1987). Survival of human rhinovirus type 14 dried onto nonporous inanimate surfaces: effect of relative humidity and suspending medium. Canadian journal of microbiology, 33(9), 802–806. https://doi.org/10.1139/m87-136

Sattar, S. A., Lloyd-Evans, N., Springthorpe, V. S., & Nair, R. C. (1986). Institutional outbreaks of rotavirus diarrhoea: potential role of fomites and environmental surfaces as vehicles for virus transmission. The Journal of hygiene, 96(2), 277–289. https://doi.org/10.1017/s0022172400066055

Sauer, K. (2003). The genomics and proteomics of biofilm formation. Genome Biology, 4(6), 1-5. https://doi.org/10.1186/gb-2003-4-6-219

Schöbitz, R., Ciampi, L., & Nahuelquin, Y. (2009). Listeria monocytogenes un peligro latente para la industria alimentaria. Agro sur, 37(1), 1-8. Disponible en: http://revistas.uach.cl/index.php/agrosur/article/view/4006 (Acceso junio 2021).

Scott, E., & Bloomfield, S. F. (1990). The survival and transfer of microbial contamination via cloths, hands and utensils. The Journal of applied bacteriology, 68(3), 271–278. https://doi.org/10.1111/j.1365-2672.1990.tb02574.x

Short, B., Brown, J., Delaney, C., Sherry, L., Williams, C., Ramage, G., & Kean, R. (2019). Candida auris exhibits resilient biofilm characteristics in vitro: implications for environmental persistence. The Journal of hospital infection, 103(1), 92–96. https://doi.org/10.1016/j.jhin.2019.06.006

Siroli, L., Patrignani, F., Serrazanetti, D. I., Chiavari, C., Benevelli, M., Grazia, L., & Lanciotti, R. (2017). Survival of Spoilage and Pathogenic Microorganisms on Cardboard and Plastic Packaging Materials. Frontiers in microbiology, 8, 2606. https://doi.org/10.3389/fmicb.2017.02606

Tagg, J. R., & Ragland, N. L. (1991). Applications of BLIS typing to studies of the survival on surfaces of salivary streptococci and staphylococci. The Journal of applied bacteriology, 71(4), 339–342. https://doi.org/10.1111/j.1365-2672.1991.tb03797.x

Tamrakar, S. B., Henley, J., Gurian, P. L., Gerba, C. P., Mitchell, J., Enger, K., & Rose, J. B. (2017). Persistence analysis of poliovirus on three different types of fomites. Journal of applied microbiology, 122(2), 522–530. https://doi.org/10.1111/jam.13299

Thompson, K. A., & Bennett, A. M. (2017). Persistence of influenza on surfaces. The Journal of hospital infection, 95(2), 194–199. https://doi.org/10.1016/j.jhin.2016.12.003

Tjøtta, E., Hungnes, O., & Grinde, B. (1991). Survival of HIV-1 activity after disinfection, temperature and pH changes, or drying. Journal of medical virology, 35(4), 223–227. https://doi.org/10.1002/jmv.1890350402

Traoré, O., Springthorpe, V. S., & Sattar, S. A. (2002). A quantitative study of the survival of two species of Candida on porous and non-porous environmental surfaces and hands. Journal of applied microbiology, 92(3), 549–555. https://doi.org/10.1046/j.1365-2672.2002.01560.x

van Doremalen, N., Bushmaker, T., & Munster, V. J. (2013). Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 18(38), 20590. https://doi.org/10.2807/1560-7917.es2013.18.38.20590

van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., & Munster, V. J. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. The New England journal of medicine, 382(16), 1564–1567. https://doi.org/10.1056/NEJMc2004973

Vogel, B. F., Hansen, L. T., Mordhorst, H., & Gram, L. (2010). The survival of Listeria monocytogenes during long term desiccation is facilitated by sodium chloride and organic material. International journal of food microbiology, 140(2-3), 192–200. https://doi.org/10.1016/j.ijfoodmicro.2010.03.035

Warnes, S. L., & Keevil, C. W. (2013). Inactivation of norovirus on dry copper alloy surfaces. PloS one, 8(9), e75017. https://doi.org/10.1371/journal.pone.0075017

Weaver, L., Michels, H. T., & Keevil, C. W. (2010). Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminium. Letters in applied microbiology, 50(1), 18–23. https://doi.org/10.1111/j.1472-765X.2009.02753.x

Webster, C., Towner, K. J., & Humphreys, H. (2000). Survival of Acinetobacter on three clinically related inanimate surfaces. Infection control and hospital epidemiology, 21(4), 246. https://doi.org/10.1086/503214

Weese, J. S., Jarlot, C., & Morley, P. S. (2009). Survival of Streptococcus equi on surfaces in an outdoor environment. The Canadian veterinary journal = La revue veterinaire canadienne, 50(9), 968–970. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19949559/ (Acceso mayo 2021).

Welsh, R. M., Bentz, M. L., Shams, A., Houston, H., Lyons, A., Rose, L. J., & Litvintseva, A. P. (2017). Survival, Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic Yeast Candida auris on a Plastic Health Care Surface. Journal of clinical microbiology, 55(10), 2996–3005. https://doi.org/10.1128/JCM.00921-17

Wendt, C., Wiesenthal, B., Dietz, E., & Rüden, H. (1998). Survival of vancomycin-resistant and vancomycin-susceptible enterococci on dry surfaces. Journal of clinical microbiology, 36(12), 3734–3736. https://doi.org/10.1128/JCM.36.12.3734-3736.1998

Wilks, S. A., Michels, H., & Keevil, C. W. (2005). The survival of Escherichia coli O157 on a range of metal surfaces. International journal of food microbiology, 105(3), 445–454. https://doi.org/10.1016/j.ijfoodmicro.2005.04.021

Williams, A. P., Avery, L. M., Killham, K., & Jones, D. L. (2005). Persistence of Escherichia coli O157 on farm surfaces under different environmental conditions. Journal of applied microbiology, 98(5), 1075–1083. https://doi.org/10.1111/j.1365-2672.2004.02530.x

Wood, J. P., Choi, Y. W., Wendling, M. Q., Rogers, J. V., & Chappie, D. J. (2013). Environmental persistence of vaccinia virus on materials. Letters in applied microbiology, 57(5), 399–404. https://doi.org/10.1111/lam.12126


Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2022 Boletín de Malariología y Salud Ambiental