La inteligencia artificial, una herramienta para la Salud Digital
Resumen
Palabras clave
Texto completo:
PDFReferencias
Alipanahi B., Delong A., Weirauch M. & Frey B. (2015). Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnoly; 33:831–838. https://doi.org/10.1038/nbt.3300.
Bhinder B., Gilvary C., Madhukar N., & Elemento O. (2021). Artificial Intelligence in Cancer Research and Precision Medicine. Cancer discovery; 11(4):900–915. https://doi.org/10.1158/2159-8290.CD-21-0090.
Boden, M. (2017). Inteligencia artificial. Ediciones Turner. ISBN: 9788416714223.
Chan H., Samala R., Hadjiiski L., & Zhou C. (2020). Deep Learning in Medical Image Analysis. Advances in experimental medicine and biology; 1213:3–21. https://doi.org/10.1007/978-3-030-33128-3_1.
Cheerla A. & Gevaert O. (2019). Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics;35(14): i446–i454. https://doi.org/10.1093/bioinformatics/btz342.
de Miguel Beriain I. (2020). Should we have a right to refuse diagnostics and treatment planning by artificial intelligence?. Medicine, health care, and philosophy; 23(2):247–252. https://doi.org/10.1007/s11019-020-09939-2.
Dembrower K., Wåhlin E., Liu Y., Salim M., Smith K., Lindholm P., et al. (2020). Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study. The Lancet. Digital health; 2(9):e468–e474. https://doi.org/10.1016/S2589-7500(20)30185-0.
Erickson B., Korfiatis P., Akkus Z., & Kline T. (2017). Machine Learning for Medical Imaging. Radiographics: a review publication of the Radiological Society of North America, Inc; 37(2):505–515. https://doi.org/10.1148/rg.2017160130.
Fatehi F., Samadbeik M., & Kazemi A. (2020). What is Digital Health? Review of Definitions. Studies in health technology and informatics; 275:67–71. https://doi.org/10.3233/SHTI200696.
Hamet P. & Tremblay J. (2017). Artificial intelligence in medicine. Metabolism: clinical and experimental: 69S:S36–S40. https://doi.org/10.1016/j.metabol.2017.01.011.
Hosny A., Parmar C., Quackenbush J., Schwartz L., & Aerts H. (2018). Artificial intelligence in radiology. Nature reviews. Cancer; 18(8):500–510. https://doi.org/10.1038/s41568-018-0016-5.
Komorowski M., Celi L., Badawi O., Gordon A. & Faisal A. (2018). The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nature medicine; 24(11):1716–1720. https://doi.org/10.1038/s41591-018-0213-5.
Microsoft (2020). World Mosquito. Disponible en: https://news.microsoft.com/es-xl/features/vencer-a-la-fiebre-del-dengue-la-ia-impulsa-la-lucha-global-contra-las-enfermedades-transmitidas-por-mosquitos/ (Acceso diciembre 2020).
Neri E., Coppola F., Miele V., Bibbolino C. & Grassi R. (2020). Artificial intelligence: Who is responsible for the diagnosis? La Radiología médica; 125(6):517–521. https://doi.org/10.1007/s11547-020-01135-9.
Organización Mundial de la Salud (2020a). Dengue y dengue grave. Nota de prensa. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/dengue-and-severe-
Abril-Junio 2021, Vol. LXI (2): 307-317
dengue#:~:text=El%20n%C3%BAmero%20de%20casos%20de,pasaron%20de%20960%20a%204032. (Acceso diciembre 2020).
Organización Mundial de la Salud (2020b). Informe mundial sobre el paludismo. Nota informativa. Disponible en: https://cdn.who.int/media/docs/default-source/malaria/world-malaria-reports/world-malaria-report-2020-briefing-kit-sp.pdf?sfvrsn=a6de03a5_11. (Acceso enero 2021).
Organización Mundial de la Salud (2020c). VIH/Sida. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/hiv-aids#:~:text=Debido%20a%20las%20deficiencias%20en,millones%20de%20personas%20se%20infectaron. (Acceso enero 2021).
Organización Mundial de la Salud (2021). Enfermedades Crónicas. Disponible en: https://www.who.int/topics/chronic_diseases/es/#:~:text=Las%20enfermedades%20cr%C3%B3nicas%20son%20enfermedades,del%2063%25%20de%20las%20muertes. (Acceso enero 2021).
Organización Panamericana de la Salud (2016). Enfermedades infecciosas desatendidas en las Américas: Historias de éxito e innovación para llegar a los más necesitados. ISBN 9789275318966. Disponible en: https://iris.paho.org/handle/10665.2/31399. (Acceso octubre 2020).
Organización Panamericana de la Salud (2021). Investigaciones. Disponible en: https://www.paho.org/es/temas/investigaciones#:~:text=Las%20asociaciones%20p%C3%BAblico%2Dprivadas%20y,por%20s%C3%AD%20solas%20son%20insuficientes. (Acceso diciembre 2021).
Ploug T. & Holm S. (2020). The right to refuse diagnostics and treatment planning by artificial intelligence. Medicine, Health Care and Philosophy; 23(1):107-114. https://doi.org/10.1007/s11019-019-09912-8.
Rouhiainen L. (2018). Inteligencia artificial. Madrid: Alienta Editorial. Disponible en: https://static0planetadelibroscom.cdnstatics.com/libros_contenido_extra/40/39308_Inteligencia_artificial.pdf. (Acceso Febrero 2021).
Rusk, N. (2016). Deep learning. Nature Methods; 13(1): 35. https://doi.org/10.1038/nmeth.3707.
Scavuzzo J., Trucco F., Espinosa M., Tauro C., Abril M., Scavuzzo C., et al. (2018). Modeling Dengue vector population using remotely sensed data and machine learning. Acta tropica; 185:167–175. https://doi.org/10.1016/j.actatropica.2018.05.003.
Siddiqui A., Ladas J. & Lee J. (2020). Artificial intelligence in cornea, refractive, and cataract surgery. Current opinion in ophthalmology; 31(4):253–260. https://doi.org/10.1097/ICU.0000000000000673.
Thomas P., CastrodaSilva B., Andrew G., Barto A., Giguere S., Brun Y., et al. (2019). Preventing undesirable behavior of intelligent machines. Science;366(6468):999–1004. https://doi.org/10.1126/science.aag3311.
Torres K., Bachman C., Delahunt C., Alarcon J., Alava F., Gamboa D., et al. (2018). Automated microscopy for routine malaria diagnosis: a field comparison on Giemsa-stained blood films in Peru. Malaria journal; 17(1):339. https://doi.org/10.1186/s12936-018-2493-0.
Turing, A., & Haugeland, J. (1950). Computing machinery and intelligence (p 29-56). Cambridge, MA: MIT Press.
Uc-Cetina V., Brito-Loeza C. & Ruiz-Piña H. (2015). Chagas Parasite Detection in Blood Images Using AdaBoost. Computational and Mathematical Methods in Medicine:139681. https://doi.org/10.1155/2015/139681.
Vaishya R., Javaid M., Khan I. & Haleem A. (2020). Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes & metabolic syndrome;14(4):337–339. https://doi.org/10.1016/j.dsx.2020.04.012.
Villalta F. & Rachakonda G. (2019). Advances in preclinical approaches to Chagas disease drug discovery. Expert opinion on drug discovery; 14(11):1161–1174. https://doi.org/10.1080/17460441.2019.1652593.
Zhou J., Theesfeld C., Yao K., Chen K., Wong A., & Troyanskaya O. (2018). Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nature genetics; 50(8):1171–1179. https://doi.org/10.1038/s41588-018-0160-6.
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2021 Boletín de Malariología y Salud Ambiental