Células inflamatorias en la secreción nasal y citocinas proinflamatorias Th1, Th2, Th17 y reguladoras en el suero de pacientes con leishmaniasis cutánea Americana

Dennis A. Lugo, Orquídea L. Rodríguez, Wilmen Galindo, María E. Ortega, Ángel Cardozo, Arlet Ferrer, Rosaura Benítez, Aura M. Suarez, Dorila Delgado, Iraida Mendoza, José Carrero, Elizabeth Giganti, Alexis Castrillo, Olga Zerpa, Maira Cabrera

Resumen


En la forma mucocutánea (LCM) y cutánea (LCL) de la leishmaniasis, se genera una respuesta inflamatoria cuyos mediadores (células y citocinas) se han involucrado en la severidad de las úlceras y en el daño tisular observado en estos pacientes, particularmente en los LCM. Por ello, nos propusimos identificar los grupos celulares predominantes en la secreción nasal de pacientes con LCL y LCM, y relacionarlos con citocinas proinflamatorias y reguladoras. Evaluamos en pacientes LCL (n=20), LCM (n=14) y 20 individuos sanos: a) La cuantificación de tipos de leucocitos en “frotis” de secreción nasal, úlceras cutáneas y sangre periférica teñidos con Giemsa empleando microscopía óptica, b) Concentraciones séricas de IL-8, IL-4 e IL-10 por citometría de flujo (CBA array) e IFN-γ, TNF-α e IL-17 por ELISA. El grupo celular predominante en la secreción nasal de pacientes con LCM fueron los neutrófilos (80,7%) y escasos eosinófilos (0,6%), comparados con los LCL y controles, en los que no se observaron estas células. Mientras que los “frotis” de las ulceras de los LCL presentaron 45,3% de neutrófilos y 43% de linfocitos. En contraste, en sangre periférica, de los pacientes se observó un incremento de neutrófilos y linfocitos junto a una frecuencia significativa de monocitos (LCM: 5,3; LCL: 6,3%) y eosinófilos (LCM: 8,2%; LCL: 5,2%). Todo esto sugiere la participación de los neutrófilos en la inmunopatogénesis en la LCM. Adicionalmente, se demostró una mayor (P=0,03) concentración sérica de IL-8 en los pacientes con LCL (18,5ρg/ mL) y LCM (18,2ρg/mL) respecto a

Palabras clave


: leishmaniasis, células polimorfonucleares, citocinas, secreción nasal.

Texto completo:

PDF

Referencias


Antonelli L. R. V., Dutra W. O., Almeida R. P., Bacellar O., Carvalho E. M. & Gollob K. J. (2005). Activated inflammatory T cells correlate with

lesion size in human cutaneous leishmaniasis. Immunol. Lett. 101: 226-230.

Badolato R., Sacks D. L., Savoia D. & Musso T. (1996). Leishmania major: infection of human monocytes induces expression of IL-8 and

MCAF. Exp. Parasitol. 82: 21-26.

Bacellar O., Lessa H., Schriefer A., Machado P., Jesus A. R. de, Dutra W. O., et al. (2002). UpRegulation of Th1-Type Responses in Mucosal

Leishmaniasis Patients. Infect. Immun. 70: 6734-6740.

Bennouna S., Bliss S. K., Curiel T. J. & Denkers E. Y. (2003). Cross-talk in the innate immune system: Neutrophils instruct recruitment and activation of dendritic cells during microbial Infection. J. Immunol. 171: 6052-6058.

Boaventura V. S., Santos C. S., Cardoso C. R., de Andrade J., Dos Santos W. L. C., Clarêncio J., et al. (2010). Human mucosal leishmaniasis:

neutrophils infiltrate areas of tissue damage that express high levels of Th17-related cytokines. Eur. J. Immunol. 40: 2830-2836.

Bocheńska-Marciniak M., Kupczyk M., Górski P. & Kuna P. (2003). The effect of recombinant interleukin-8 on eosinophils’ and neutrophils’

migration in vivo and in vitro. Allergy. 58: 795-801.

Bomfim G., Andrade B. B., Santos S., Clarencio J., Barral-Netto M. & Barral A. (2007). Cellular analysis of cutaneous leishmaniasis

lymphadenopathy:insights into the early phases of human disease. Am. J. Trop. Med. Hyg. 77: 854-859.

Blanchard C. & Rothenberg M. E. (2009). Biology of the eosinophils. Adv. Immunol. 101: 81-121. Convit J. (1974). Leishmaniasis. Similar clinicalimmunological-pathological models. Ethiop. Med. J. 12: 187-195

Convit J., Ulrich M., Fernández C. T., Tapia F. J., Cáceres-Dittmar G., Castés M., et al. (1993). The clinical and immunological spectrum of American cutaneous leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 87: 444-448.

Cabrera M., Rodríguez O., Monsalve I., Tovar R. & Hagel I. (2003). Variations in the serum levels of soluble CD23, nitric oxide and IgE across the spectrum of American cutaneous leishmaniasis. Acta Trop. 88: 145-151.

Caceres-Dittmar G., Tapia F. J., Sánchez M. A., Yamamura M., Uyemura K., Modlin R. L., et al. (1993). Determination of the cytokine profile

in American cutaneous leishmaniasis using the polymerase chain reaction. Clin. Exp. Immunol 91: 500-505.

Castés M., Cabrera M., Trujillo D., Rodas A., Scott D. & Blackwell J. (1996). Cytokine profile in human American cutaneous leishmaniasis. New

dimensions in Parasitology. Acta Parasitol. Turçica. 20: 45-57.

Castés M., Trujillo D., Rojas M. E., Fernandez C. T., Araya L., Cabrera M., et al. (1993). Serum levels of tumor necrosis factor in patients with American cutaneous leishmaniasis. Biol. Res. 26: 233-238. Charmoy M., Auderset F., Allenbach C. & TacchiniCottier F. (2010). The prominent role of neutrophils during the initial phase of infection by Leishmania parasites. J. Biomed Biotechnol. 2010: 719361.

De Trez C., Magez S., Akira S., Ryffel B., Carlier Y. & Muraille E. (2009). iNOS-Producing Inflammatory Dendritic Cells Constitute the Major

Infected Cell Type during the Chronic Leishmania major Infection Phase of C57BL/6 Resistant Mice. PLoS. Pathog. 5:e1000494.

de Oliveira C. F., de Souza C. da S., Mendes V. G., Abreu-Silva A. L., Goncalves S. C. & Calabrese K. S. (2010). Immunopathological studies of

Leishmania amazonensis infection in resistant and in susceptible mice. J. Infect. Dis. 201: 1933-1940.

Diaz N. L., Arvelaez F. A., Zerpa O. & Tapia F. J. (2005). Inducible nitric oxide synthase and cytokine pattern in lesions of patients with

American cutaneous leishmaniasis. Clin. Exp. Dermatol. 31: 114-117.

Faria D. R., Gollob K. J., Barbosa J., Schriefer A., Machado P. R. L., Lessa H., et al. (2005). Decreased In Situ Expression of Interleukin-10

Receptor Is Correlated with the Exacerbated Inflammatory and Cytotoxic Responses Observed in Mucosal Leishmaniasis. Infect Immun. 73:

-7859.

Garside P. & Mowat A. M. (1995). Polarization of Th-cell responses: a phylogenetic consequence of nonspecific immune defence? Immunol. Today. 16: 220-223.

Geissmann F. (2007). The origin of the dendritic cells. Nat. Immunol. 8: 558-560.

Grimaldi G. Jr., Soares M. J. & Moriearty P. L. (1984). Tissue eosinophilia and Leishmania mexicana mexicana eosinophil interactions

in murine cutaneous leishmaniasis. Parasite Immunol. 6: 397-408.

Heinzel F. P., Sadick M. D., Holaday B. J., Coffman R. L. & Locksley R. M. (1989). Reciprocal expression of interferon-gamma or interleukin-4

during the resolution or progression of murine leishmaniasis. Evidence for the expansion of distinct helper T cell subsets. J. Exp. Med. 169:

-72.

Jacobi H. H., Poulsen L. K., Reimert C. M., Skov P. S., Ulfgren A.-K., Jones I., et al. (1998). IL-8 and the Activation of Eosinophils and Neutrophils following Nasal Allergen Challenge. Int. Arch. Allergy Immunol. 116: 53-59.

Jain S., Chodisetti S. B. & Agrewala J. N. (2011). CD40 Signaling Synergizes with TLR-2 in the BCR Independent Activation of Resting B Cells.

PLoS. ONE. 6:e20651.

Kaye P. & Scott P. (2011). Leishmaniasis: complexity at the host–pathogen interface. Nat. Rev. Microbiol. 9: 604-615.

Kolaczkowska E. & Kubes P. (2013). Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13: 159-175.

Korn T., Bettelli E., Oukka M. & Kuchroo V. K. (2009). IL-17 and Th17 Cells. Annu. Rev. Immunol. 27: 485-517.

Maroof A., Beattie L., Kirby A., Coles M. & Kaye P. M. (2009). Dendritic Cells Matured by Inflammation Induce CD86-Dependent Priming

of Naive CD8+ T Cells in the Absence of Their Cognate Peptide Antigen. J. Immunol. 183: 7095-103.

McFarlane E., Perez C., Charmoy M., Allenbach C., Carter K. C., Alexander J., et al. (2008). Neutrophils Contribute to Development of a

Protective Immune Response during onset of Infection with Leishmania donovani. Infect. Immun. 76: 532-541.

Miranda M., Andrade H., Castro T., Oliveira A., Scherifer A., Machado P., et al. (2007). Mucosal leishmaniasis: epidemiological and clinical

aspects. Rev. Bras. Otorrinolaringol. 73: 843-847.

Mosmann T. R. & Coffman R. L. (1989). TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties.

Annu. Rev. Immunol. 7: 145-173.

Murray H. W., Berman J. D., Davies C. R. & Saravia N. G. (2005). Advances in leishmaniasis. The Lancet. 366: 1561-1577.

Nathan C. (2006). Neutrophils and immunity: challenges and opportunities. Nat. Ver. Immunol. 6: 173-182.

Oliveira W. N., Ribeiro L. E., Schrieffer A., Machado P., Carvalho E. M. & Bacellar O. (2014). The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of human tegumentary leishmaniasis. Cytokine. 66: 127-132.

Pearson R. D., Uydess I. L., Chapman S.W., Steigbigel R. T. (1987). Interaction of human eosinophils with Leishmania donovani. Ann. Trop. Med. Parasitol. 81: 735-739.

Pimenta P. F., Dos Santos M. A. & De Souza W. (1987). Fine structure and cytochemistry of the interaction between Leishmania mexicana

amazonensis and rat neutrophils and eosinophils. J Submicrosc Cytol. 19: 387-395.


Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2021 Boletín de Malariología y Salud Ambiental