Antígenos parasitarios de O-Glicosilación incompleta: Un enfoque inmunoterapeutico contra el cáncer

Rocío Rondón Mercado, Nora Mogollón, Rafael Bonfante Cabarcas, Mary Carmen Pérez Aguilar

Resumen


Es cada vez mayor la evidencia experimental y clínica de que el sistema inmune interviene activamente en la patogénesis y el control de la progresión tumoral. Una respuesta antitumoral efectiva depende de la correcta interacción de diversos componentes del sistema inmune, como las células presentadoras de antígeno y diferentes sub-poblaciones de células T. Sin embargo, los tumores malignos desarrollan numerosos mecanismos para evadir su reconocimiento y eliminación. Diversos estudios reportan que estructuras asociadas a tumor tales como los antígenos Tn y sialil-Tn se expresan en algunos parásitos protozoarios y helmintos, planteando numerosas interrogantes a nivel de la interacción parásito-hospedador. Considerando que existe una correlación negativa entre ciertas infecciones parasitarias y el desarrollo de cáncer, los antígenos de O-glicosilación incompleta obtenidos de parásitos podrían ser potenciales estructuras miméticas para la inducción de respuestas cruzadas contra antígenos tumorales. Actualmente, el área de la glicobiología del cáncer tiene muchas expectativas para encontrar solución a uno de los grandes problemas de salud que afecta a la población tanto desde el punto de vista económico como social.

Palabras clave


: O-glicosilación, cáncer, parásito, antígenos asociados a tumor

Texto completo:

PDF

Referencias


Abdel-Rahim A. Y. (2001). Parasitic infections and hepatic neoplasia. Dig. Dis. 19: 288-291.

Alvarez-Errico D., Medeiros A., Miguez M., Casaravilla C., Malgor R., Carmona C, et al. (2001). O-glycosylation in Echinococcus granulosus: identification and characterization of the carcinoma associated Tn antigen. Exp. Parasitol. 98: 100-109.

Ando H., Matsushita T., Wakitani M., Sato T., Kodama-Nishida S., Shibata K., et al. (2008). Mouse-human chimeric anti-Tn IgG1 induced anti-tumor activity against Jurkat cells in vitro and in vivo. Biol. Pharm. Bull. 31: 1739-1744.

Blixt O., Lavrova O. I., Mazurov D. V., Cló E., Kracun S. K., Bovin N. V., et al. (2012). Analysis of Tn

antigenicity with a panel of new IgM and IgG1 monoclonal antibodies raised against leukemic cells. Glycobiology. 22: 529-542.

Bonfante-Cabarcas R., Ibarra A., Salas Y., Colmenares de Páez V., Bonfante-Rodríguez R., RodríguezBonfante C., et al. (2013). Trypanosoma cruzi inhibits the development of tumors in C57/BL6

mice and the growth of B16/BL6 melanoma cells in culture. Rev. Soc. Bras. Med. Trop. (En prensa).

Bouanene H., Sahrawi W., Mokni M., Fatma L. B., Bouriga A., Limen H. B., et al. (2011). Correlation between Heterogeneous Expression of Sialyltransferases and MUC16 in Ovarian Tumor Tissues. Onkologie. 34: 165-169.

Camby I., Le Mercier M., Lefranc F. & Kiss R. (2006). GalectiN-1: a small protein with major functions. Glycobiology. 16: 137-157.

Carlos C. A., Dong H. F., Howard O. M., Oppenheim J. J., Hanisch F. G. & Finn O. J. (2005). Human tumor antigen MUC1 is chemotactic for immature dendritic cells and elicits maturation but does not promote Th1 type immunity. J. Immunol. 175: 1628-1635.

Casaravilla C., Freire T., Malgor R., Medeiros A., Osinaga E. & Carmona C. (2003). Mucin-type O glycosylation in helminth parasites from major taxonomic groups: evidence for widespread distribution of the Tn antigen (GalNAc-Ser/Thr) and identification of UDP-GalNAc: polypeptide N acetylgalactosaminyltransferase activity. J. Parasitol. 84: 709-714.

Casaravilla C. & Díaz A. (2010). Studies on the structural mucins of the Echinococcus granulosus laminated layer. Mol. Biochem. Parasitol. 174: 132-136.

Chapman P. B., Morrissey D. M., Panageas K. S., Hamilton W. B., Zhan C., Destro A. N., et al. (2000). Induction of antibodies against GM2 ganglioside by immunizing melanoma patients using GM2-keyhole limpet hemocyanin + QS21 vaccine: a dose-response study. Clin. Cancer. Res. 6: 874-879.

Dunn G. P., Bruce A. T., Ikeda H., Old L. J. & Schreiber R. D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3: 991-998.

Dunn G. P., Old L. J. & Schreiber R. D. (2004). The three Es of cancer immunoediting. Annu. Rev. Immunol. 22: 329-360.

Freire T., Robello C., Casaravilla C., Errico D. A., Medeiros A., Carmona C, et al. (2002). Antígenos mucínicos de O-glicosilación simple: nuevas similitudes entre células cancerosas y parásitos. Actas. Fisiol. 8: 89-107.

Freire T. & Osinaga E. (2003a). Immunological and biomedical relevance of the Tn antigen. Rev. Immunol. 1: 27-38.

Freire T., Casaravilla C., Carmona C. & Osinaga E. (2003b). Mucin-type O-glycosylation in Fasciola hepatica: characterization of carcinomaassociated Tn and sialyl-Tn antigens and evaluation of UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase activity. Int. J. Parasitol. 33: 47-56.

Freire T., Robello C., Soulé S., Ferreira F. & Osinaga E. (2003c). Sialyl-Tn antigen expression and O-linked GalNAc-Thr synthesis by Trypanosoma cruzi. Biochem. Biophys. Res. Commun. 26: 1309-1316.

Freire T., Bay S., Vichier-Guerre S., LoMan R. & Leclerc C. (2006). Carbohydrate antigens: synthesis aspects and immunological applications in cancer. Mini. Rev. Med. Chem. 12: 1357-1373.

Freire T. & Osinaga E. (2012). The sweet side of tumor immunotherapy. Immunotherapy. 4: 719-734.

Gallegos V., Itandehui B., Coutiño R., Martínez G. & Hernández-Cruz P. (2008). Marcadores glicosilados en cáncer de mama. REB. 27: 52-59.

Galli-Stampino L., Meinjohanns E., Frische K., Meldal M., Jensen T., Werdelin O., et al. (1997). T-cell recognition of tumor-associated carbohydrates: the nature of the glycan moiety plays a decisive role in determining glycopeptide immunogenicity. Cancer. Res. 57: 3214-3222.

García E. & Torrella A. (2004). Vacunas en melanoma. Oncología. 27: 108-113.

Gilewski T. A., Ragupathi G., Dickler M., Powell S., Bhuta S., Panageas K., et al. (2007). Immunization

of high risk breast cancer patients with clustered sTN-KLH conjugateplus the immunologic adjuvant QS-21. Clin. Cancer. Res. 13: 2977-2985.

Glinsky V. V., Glinsky G. V., Glinskii O. V., Huxley V. H., Turk J. R., Mossine V. V., et al. (2003). Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer. Res. 63: 3805-3811.

Gong P., Zhang J., Cao L., Nan Z., Li Z., Yang J., et al. (2011). Identification and characterization of myeloma-associated antigens in Trichinella spiralis. Exp. Parasitol. 4: 784-788.

Gruszewska E. & Chrostek L. (2013). The alterations of glycosylation in malignant diseases. Pol. Merkur. Lekarski. 34: 58-61.

Hanisch F. G. & Ninkovic T. (2006). Immunology of O-glycosylated proteins: approaches to the design

of a MUC1 glycopeptide-based tumor vaccine. Cur. Protein. Pept. Sci. 7: 307-315.

Hill M., Mazal D., Biron V. A., Pereira L., Ubillos L., Berriel E., et al. (2010). A novel clinically relevant

animal model for studying galectin-3 and its ligands during colon carcinogenesis. J. Histochem. Cytochem. 58: 553-565.

Hubert P., Heitzmann A., Viel S., Nicolas A., SastreGarau X., Oppezzo P., et al. (2011). Antibody-dependent cell cytotoxicity synapses form in mice during tumor-specific antibody immunotherapy. Cancer. Res. 71: 5134-5143.

Jeschke U., Mylonas I., Shabani N., Kunert-Keil C., Schindlbeck C., Gerber B., et al. (2005).

Expression of sialyl lewis X, sialyl Lewis A, E-cadherin and cathepsin-D in human breast cancer: immunohistochemical analysis in mammary carcinoma in situ, invasive carcinomas and their lymph node metastasis. Anticancer. Res. 25: 1615-1622.

Ju T., Lanneau G. S., Gautam T., Wang Y., Xia B., Stowell S. R., et al. (2008). Human tumor antigens

Tn and sialyl Tn arise from mutations in Cosmc. Cancer. Res. 68: 1636-1646.

Ju T., Otto VI. & Cummings RD. (2011). The Tn antigen-structural simplicity and biological complexity. Angew. Chem. Int. Ed. Engl. 50: 1770- 1791.

Julien S., Lagadec C., Krzewinski-Recchi M. A., Courtand G., Le Bourhis X. & Delannoy P. (2005).

Stable expression of sialyl-Tn antigen in T47-D cells induces a decrease of cell adhesion and an increase of cell migration. Breast. Cancer. Res. Treat. 90: 77-84.

Julien S., Picco G., Sewell R., Vercoutter-Edouart A. S., Tarp M., Miles D., et al. (2009). SialylTn vaccine induces antibody-mediated tumour protection in a relevant murine model. Br. J. Cancer. 100: 1746-1754.

Kowalczyk W., Monsó M., de la Torre B. G., & Andreu D. (2011). Synthesis of multiple antigenic

peptides (MAPs)-strategies and limitations. J. Pept. Sci. 4: 247-251.

Kuduk S., Schwarz J., Chen X. T., Glunz P., Sames D., Ragupathi G., et al. (1998). Synthetic and

immunological studies of clustered modes of muciN-related Tn and TF O-linked antigens: the preparation of a glycopeptide-based vaccines for clinical trials against prostate cancer. J. Am. Chem. Soc. 120: 12474-12485.

Kurtenkov O., Miljukhina L., Smorodin J., Klaamas K., Bovin N., Ellamaa M., et al. (1999). Natural

IgM and IgG antibodies to Thomsen-Friedenreich (T) antigen in serum of patients with gastric cancer

and blood donors--relation to Lewis (a,b) histoblood group phenotype. Acta. Oncol. 38: 939-943.

Lauwaet T., Oliveira M., Mareel M. & Leroy A. (2000). Molecular mechanisms of invasion by cancer cells, leukocytes and microorganisms. Microbes. And. Infection. 2: 923-931. Lisowska E. (2002). The role of glycosylation in protein antigenic properties. Cell. Mol. Life. Sci. 59: 445-455.

Lo-Man R., Bay S., Vichier-Guerre S., Deriaud E., Cantacuzene D. & Leclerc C. (1999). A fully synthetic immunogen carrying a carcinomaassociated carbohydrate for active specific immunotherapy. Cancer. Res. 59:1520-1524.

Lo-Man R., Vichier-Guerre S., Bay S., Deriaud E., Cantacuzene D. & Leclerc C. (2001). Antitumor immunity provided by a synthetic multiple antigenic glycopeptide displaying a tri-Tn glycotope. J. Immunol. 166: 2849-2854. Maizels R. M., Balic A., Gomez-Escobar N., Nair

M., Taylor M. D. & Allen J. E. (2004). Helminth parasites-masters of regulation. Immuno. Rev. 201: 89-116.

Mathieu S., Prorok M., Benoliel A. M., Uch R., Langlet C., Bongrand P., et al. (2004). Transgene

expression of alpha(1,2)-fucosyltransferase-I (FUT1) in tumor cells selectively inhibits sialylLewis x expression and binding to E-selectin without affecting synthesis of sialyl-Lewis a or binding to P-selectin. Am. J. Pathol. 164: 371-383.

Mel’nikov V. G., Fierro Velasko F. H. & Dobrovinskaya O. R. (2004). Suppression of growth and metastasizing of T-cell lymphoma in mice infected with american trypanosomiasis at different stages of experimental infection. Bull. Exp. Biol. Med. 137: 475-478.

Mendes T. A., Lobo F. P., Rodrigues T. S., RodriguesLuiz G. F., Darocha W. D., Fujiwara R. T., et al. (2013). Repeat-enriched proteins are related to host cell invasion and immune evasion in parasitic protozoa. Mol. Biol. Evol. 30: 951-963.

Miles D., Roché H., Martin M., Perren T. J., Cameron D. A., Glaspy J., et al. (2011). Phase III multicenter

clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist. 16: 1092-1100.

Nguyen-Truong C. K., Lee-Lin F. & Gedaly-Duff V. (2013). Contributing factors to colorectal cancer and hepatitis B screening among vietnamese Americans. Oncol. Nurs. Forum. 40: 238-251.

Oliveira E. C., Leite M., Miranda J. A., Andrade A. L., Garcia S. B., Luquetti A. O., et al. (2001). Chronic

Trypanosoma cruzi infection associated with low incidence of 1,2 dimethylhydrazine induced colon cancer in rats. Carcinogenesis. 22: 737-740.

Ono M. & Hakomori S. (2004). Glycosylation defining cancer cell motility and invasiveness. Glycoconj. J. 20: 71-78.

Ostrand-Rosenberg S., Sinha P., Beury D. W. & Clements V. K. (2012). Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumorinduced immune suppression. Semin. Cancer. Biol. 22: 275-281.

Pérez-Aguilar M. C., Goncalves L., Mogollón N. & Bonfante-Cabarcas R. (2013). O-glicosilación

incompleta en células cancerígenas y parásitos: Importancia Biomédica. Salus. 17: 58-67.

Pérez-Victoria J., Di Pietro A., Barron D., Ravelo A., Castanys S. & Gamarro F. (2002). Multidrug resistance phenotype mediated by the P-glycoprotein-like transporter in Leishmania: a search for reversal agents. Curr. Drug. Targets. 3: 311-333.

Pinho S., Marcos N. T., Ferreira B., Carvalho A. S., Oliveira M. J., Santos-Silva F., et al. (2007). Biological significance of cancer-associated sialylTn antigen: modulation of malignant phenotype in gastric carcinoma cells. Cancer. Lett. 249: 157-170.

Portela S. V., Martín C. V., Romay L. M., Cuevas E., Martín E. G. & Briera A. F. (2011). sLea and sLex expression in colorectal cancer: implications for tumourigenesis and disease prognosis. Histol. Histopathol. 26: 1305-1316.

Proudfoot O., Apostolopoulos V. & Pietersz G. A. (2007). Receptor-mediated delivery of antigens to dendritic cells: anticancer applications. Mol. Pharm. 4: 58-72.

Quezada S. A., Peggs K. S., Simpson T. R. & Allison J. P. (2011). Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol. Rev. 241: 104-118. Racey C. S., Withrow D. R. & Gesink D. (2013). Selfcollected HPV Testing Improves Participation in Cervical Cancer Screening: A Systematic Review and Meta-analysis. Can. J. Public. Health. 104: 159-166.

Ragupathi G., Liu N. X., Musselli C., Powell S., Lloyd K. & Livingston P. O. (2005). Antibodies against tumor cell glycolipids and proteins, but not mucins, mediate complement-dependent cytotoxicity. J. Immunol. 174: 5706-5712.

Rodríguez-Bonfante C., Bonfante-Cabarcas R., Ibarra A., Pérez-Aguilar M. C. & Labrador G. (2008). La infección por Trypanosoma cruzi inhibe el desarrollo del melanoma maligno. Bol. Med. Post. 24: 71-78.

Rosete P. G., Atzín J. A., Saldaña A. K., Espinosa B., Urrea F. J., Vásquez N. A., et al. (2008). Comportamiento tumoral y glicosilación. Rev. Inst. Nal. Enf. Resp. Mex. 21: 280-287.

Ryan S. O., Turner M. S., Gariépy J. & Finn O. J. (2010). Tumor antigen epitopes interpreted by the immune system as self or abnormal-self differentially affect cancer vaccine responses. Cancer. Res. 70: 5788-5796.

Schjoldager K. T. & Clausen H. (2012). Site-specific protein O-glycosylation modulates proprotein processing-deciphering specific functions of the large polypeptide GalNAc-transferase gene family. Biochim. Biophys. Acta. 12: 2079-2094.

Schreiber R. D., Old L. J. & Smyth M. J. (2011). Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 331: 1565-1570.

Shurin G. V., Shurin M. R., Bykovskaia S., Shogan J., Lotze M. T. & Barksdale E. M. Jr. (2001). Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer. Res. 61: 363-369.

Tang X., Wu Y., Belenkaya TY., Huang Q., Ray L., Qu J. (2012). Roles of N- glycosylation and lipidation in Wg secretion and signaling. Dev. Biol. 364: 32-41.

Thurin M. & Kieber-Emmons T. (2002). SA-Lea and tumor metastasis: the old prediction and recent

findings. Hybrid. Hybridomics. 21: 111-116.

Thors C., Jansson B., Helin H. & Linder E. (2006). Thomsen-Friedenreich oncofetal antigen

in Schistosoma mansoni: localization and immunogenicity in experimental mouse infection. Parasitology. 132: 73-81.

Tuma R. S. (2011). Immunotherapies in clinical trials: do they demand different evaluation tools? J. Natl. Cancer. Inst. 103: 780-781.

Varki A., Etzler M. E., Cummings R. D., & Esko J. D. (2009). Discovery and Classification of GlycanBinding Proteins. En: Essentials of Glycobiology. 2nd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. USA.

von Delwig A., Altmann D. M., Isaacs J. D., Harding C. V., Holmdahl R., McKie N., et al. (2006). The impact of glycosylation on HLA-DR1-restricted T cell recognition of type II collagen in a mouse model. Arthritis. Rheum. 54: 482-491.

Wakefield L. M. & Hill C. S. (2013). Beyond TGFβ: roles of other TGFβ superfamily members in cancer. Nat. Rev. Cancer. 13: 328-341.

Watanapa P. & Watanapa W. B. (2002). Liver flukeassociated cholangiocarcinoma. Br. J. Surg. 89: 962-970.

Wright M., Henkle K. & Mitchell G. (1990). An immunogenic Mr 23,000 integral membrane protein of Schistosoma mansoni worms that closely resembles a human tumor associated antigen. J. Immunol. 144: 3195-3200.

Xu Y., Gendler S. J. & Franco A. (2004). Designer glycopeptides for cytotoxic T cell-based elimination of carcinomas. J. Exp. Med. 199: 707-716.

Yokoigawa N., Takeuchi N., Toda M., Inoue M., Kaibori M., Yanagida H., et al. (2007). Overproduction of PGE2 in peripheral blood monocytes of gastrointestinal cancer patients with mucins in their bloodstream. Cancer. Lett. 245: 149-155.

Zambrano-Villa S., Rosales-Borjas D., Carrero J. C. & Ortiz-Ortiz L. (2002). How protozoan parasites evade the immune response. Trends. Parasitol. 18: 272-278.

Zhang J., Yang J., Han X., Zhao Z., Du L., Yu T., et al. (2012). Overexpression of heparanase multiple

antigenic peptide 2 is associated with poor prognosis in gastric cancer: Potential for therapy. Oncol lett. 4: 178-182.

Zhu S., Sun P., Zhang Y., Yan L. & Luo B. (2013). Expression of c-myc and PCNA in EpsteiN-Barr virus-associated gastric carcinoma. Exp. Ther. Med. 5: 1030-1034.


Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2021 Boletín de Malariología y Salud Ambiental