Gestión mSalud para la atención pacientes con Covid-19
Resumen
El SARS-CoV-2, ha tenido un gran impacto en la salud humana a nivel mundial, infectando a un gran número de personas y causando enfermedades graves. Durante el comienzo de la pandemia de COVID-19 no había la existencia de alguna cura o vacuna designada, la única forma conocida de romper la cadena de infección era el autoaislamiento y el mantenimiento del distanciamiento físico. Por lo tanto, con la finalidad de conocer y hacer un seguimiento para la correcta gestión y atención a los pacientes con COVID – 19, las nuevas herramientas tecnológicas han cobrado un importante papel que ha permitido mejorar la atención en salud con respecto a la enfermedad y ayudar a evitar los contagios, así como favorecer a un buen pronóstico y progresión positiva de la enfermedad. Por medio de la revisión de publicaciones científicas actuales se ha podido observar la amplia implementación de diferentes apps para agilizar el reconocimiento, detección y diagnóstico oportuno de pacientes que contraen esta enfermedad, como la aplicación de rastreo de contacto, reconocimiento facial, Chatbot, APP para radiografías de tórax – Covid, dispositivo móvil basado en IoT, entre otros. Todas estas nuevas tecnologías presentan un importante impacto socioepidemiologico en las regiones a través de la disminución de la mortalidad, permitir el distanciamiento físico, detección oportuna, seguimiento geográfico y mapeo epidemiológico, reducción de los tiempos de espera y control de la propagación del covid; permitiendo a los sistemas de salud organizarse y prepararse mejor para futuras pandemias y así evitar el colapso de las redes de salud.
Palabras clave
Texto completo:
PDFReferencias
Abbas, R., & Michael, K. (2020). Covid-19 Contact Trace App Deployments: Learnings from Australia and Singapore. IEEE Consumer Electronics Magazine, 9(5), 65–70. https://doi.org/10.1109/MCE.2020.3002490
Ahmed, A., Ali, N., Aziz, S., Abd-Alrazaq, A. A., Hassan, A., Khalifa, M., & Househ, M. (2021). A review of mobile chatbot apps for anxiety and depression and their self-care features. Computer Methods and Programs in Biomedicine Update, 1, 100012. https://doi.org.10.1016/j.cmpbup.2021.100012
Ahmed, N., Michelin, R. A., Xue, W., Ruj, S., Malaney, R., Kanhere, S. S., & & Jha, S. K. (2020). A survey of COVID-19 contact tracing apps. IEEE access, 8, 134577-134601. https://doi.org/10.1109/ACCESS.2020.3010226
Ali, A. A., ElFadl, A. H., Abujazar, M. F., Aziz, S., Abd-Alrazaq, A., Shah, Z., & Alam, T. (2020). Contact Tracing Apps for Covid-19: Access Permission and User Adoption. 2020 7th International Conference on Behavioural and Social Computing (BESC). https://doi.org/10.1109/BESC51023.2020.9348327
Alkmim, M. B. M., Marcolino, M. S., De Oliveira, C. R. A., Borges, I. N., Cardoso, C. S., Rocha, G. M., & Ribeiro, A. L. P. (2021). TeleCOVID-19: A multifaceted strategy from a public brazilian telehealth service during the COVID-19 pandemic. Remote Healthc, 0 (5531), 1–10. https://doi.org.10.3233/SHTI210022
Azad, M. A., Arshad, J., Akmal, S. M. A., Riaz, F., Abdullah, S., Imran, M., & Ahmad, F. (2020). A First Look at Privacy Analysis of COVID-19 Contact-Tracing Mobile Applications. IEEE internet of things journal, 8(21), 15796–15806. https://doi.org/10.1109/JIOT.2020.3024180
Baldeón, M., Sinbe, F., Landeo, A., Almidón, C, & Medina, L. (2021). El reto de la tecnología en la lucha contra la infodemia por Covid–19. Boletin de maraliologia y salud ambiental., 61(4), 732–741. https://doi.org/10.52808/bmsa.7e5.614.022.
Behne, A., Krüger, N., Beinke, J., & Teuteberg, F. (2021). Learnings from the design and acceptance of the German Covid-19 tracing app for IS-driven crisis management: a design science research. BMC, 21(1). https://doi.org.10.1186/s12911-021-01579-7
Berglund, J. (2020) “Tracking Covid-19: There’s an App for That. IEEE Pulse, 11(4), 14–17. https://doi/10.1109/MPULS.2020.3008356.
Bharti, U., Bajaj, D., Batra, H., Lalit, S., & Gangwani, A. (2020). Medbot: Conversational artificial intelligence powered chatbot for delivering tele-health after covid-19. Proc. 5th International Conference on Communications and Electronics System ICCES, 2020, 870–875. https://doi.org/10.1109/ICCES48766.2020.9137944
Bhowmik, T., Mojumder, R., Banerjee, I., Das, G., & Bhattacharya, A. (2020). IoT Based Non-Contact Portable Thermal Scanner for Covid-19 Patient Screening. 2020 IEEE 17th India Counc. International Conference INDICON 2020. https://doi.org/10.1109/INDICON49873.2020.9342203
Bonales, G., Pradilla, N., & Martínez, E. (2021). Chatbot como herramienta comunicativa durante la crisis sanitaria Covid-19 en España. ComHumanitas Revisión científica Comun., 11(3), 1–22. https://doi.org/10.31207/rch.v11i3.270
Cencetti, G., Santin, G., Longa, A., Pigani, E., Barrat, A., Cattuto, C., Lehmann, S., Salathé, M., & Lepri, B. (2021). Digital proximity tracing on empirical contact networks for pandemic control. Nature communications, 12(1), 1655. https://doi.org/10.1038/s41467-021-21809-w
Chauhan, A., Farmah, K., Goel, A., & Gandotra, A. (2021). A Novel Patient Monitoring System Using Photoplethysmography and IOT in the Age of Covid-19. 5th International Conference Computation Methodology Community. ICCMC 2021, 427–437. https://doi.org/10.1109/ICCMC51019.2021.9418426
Chloros, D., & Ringas, D. (2020). Fluspot: Seasonal flu tracking app exploiting wearable IoT device for symptoms monitoring. South Eastern European Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM). https://doi.org/10.1109/SEEDA-CECNSM49515.2020.9221843
Deters, F., Meier, T., Milek, A., & Horn, A. (2021). Self-focused and other-focused health concerns as predictors of the uptake of corona contact tracing apps: Empirical study. Journal Medical Internet Research, 23(8). https://doi.org/10.2196/29268
El presidente de la República. (2021). Normas legales. El peruano. Disponible en: https://busquedas.elperuano.pe/download/url/decreto-de-urgencia-que-dicta-medidas-extraordinarias-en-ma-decreto-de-urgencia-n-043-2021-1948340-3 (Acceso julio 2022).
Erazo, W., Guerrero, G., Betancourt, C., & Salazar, I. (2020). Chatbot Implementation to Collect Data on Possible Covid-19 Cases and Release the Pressure on the Primary Health Care System. IEMCON 2020, 302–307. https://doi.org/10.1109/IEMCON51383.2020.9284846
Florea, A., & Fleaca, V. (2020). Implementing an embedded system to identify possible Covid-19 suspects using thermovision cameras. 24th International Conference on System Theory, Control, and Computing (ICSTCC), 2020, 322–327. https://doi.org/10.1109/ICSTCC50638.2020.9259699
Flores, J., & Cabanillas, M. (2020). Mobile application for registration and diagnosis of respiratory diseases: A review of the scientific literature between 2010 and 2020. E-Health Bioeng. Conf., 8, 8–11. https://doi.org/10.1109/EHB50910.2020.9280282
Guisado, M., Ares, S., & Ben, L. (2021). Using mobile applications and websites for the diagnosis of Covid-19 in Spain. Enfermedades Infecciosas. y Microbiología. Clínica, 39(9), 454–457. https://doi.org/10.1016/j.eimce.2021.08.003
Hang, A., Dascalu, A., & Stanica, I. (2020). Contact Tracing App for Containing Diseases Spread. Zooming Innov. Consum. Technol. Conf. ZINC, 216–217. https://doi.org/10.1109/ZINC50678.2020.9161820
Heo, J., Park, J., Han, D., Kim, H., & Ahn, D. (2020). Covid-19 Outcome Prediction and Monitoring Solution for Military Hospitals in South Korea: Development and Evaluation of an Application. Journal of Medical Internet Research, 22(11), e2213. https://doi.org.10.2196/22131
Hutton B., Catalá, F., & Moher, D. (2016). La extensión de la declaración PRISMA para revisiones sistemáticas que incorporan metaanálisis en red: PRISMA-NMA. Med. Clin. (Barc). 147(6), 262–266. https://doi.org/10.1016/j.medcli.2016.02.025
Ishimaru, T., Ibayashi, K., Nagata, M., Hino, A., Tateishi, S., Tsuji, M., Ogami, A., Matsuda, S., Fujino, Y., & CORoNaWork Project (2021). Industry and workplace characteristics associated with the downloading of a COVID-19 contact tracing app in Japan: a nation-wide cross-sectional study. Environmental health and preventive medicine, 26(1), 94. https://doi.org/10.1186/s12199-021-01016-1
Journal, C. (2021). A chatbot to support information needs in times of Covid-19. Un chatbot para asistir a las necesidades de información en tiempos de Covid-19. 1–23. https://doi.org/10.25100/iyc.24i1.11004
Judson, T. J., Odisho, A. Y., Young, J. J., Bigazzi, O., Steuer, D., Gonzales, R., & Neinstein, A. B. (2020). Implementation of a digital chatbot to screen health system employees during the COVID-19 pandemic. Journal of the American Medical Informatics Association : JAMIA, 27(9), 1450–1455. https://doi.org/10.1093/jamia/ocaa130
Kamel, M., & Geraghty, E. (2020). Geographical tracking and mapping of coronavirus disease Covid-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: How 21st century GIS technologies are supporting the global fight against outbr. International. Journal Health Geogr.19(1), 1–12. https://doi.org:10.1186/s12942-020-00202-8
Kozyreva, A., Lorenz-Spreen, P., Lewandowsky, S., Garrett, P. M., Herzog, S. M., Pachur, T., & Hertwig, R. (2021). Psychological factors shaping public responses to COVID-19 digital contact tracing technologies in Germany. Scientific reports, 11(1), 18716. https://doi.org/10.1038/s41598-021-98249-5
Lee, H., Kang, J., & Yeo, J. (2021). Medical specialty recommendations by an artificial intelligence chatbot on a smartphone: Development and deployment. Journal Medical Internet Research, 23(5), 1–10. https://doi.org/10.2196/27460
Li, X., Li, C., .& Zhu, D. (2020). Covid-MobileXpert: On-Device Covid-19 Patient Triage and Follow-up using Chest X-rays. IEEE Bioinforma. Biomed. BIBM 2020, 1063–1067. https://doi.org/10.1109/BIBM49941.2020.9313217
Mancastroppa, M., Castellano, C., Vezzani, A., & Burioni, R. (2021). Stochastic sampling effects favor manual over digital contact tracing. Nat. Commun., 12(1), 1–9. https://doi.org/10.1038/s41467-021-22082-7
Mazli, M., & Mazalan, L. (2021). Face identity for face mask recognition system. ISCAIE 2021 - IEEE 11th. 42–47. https://doi.org/10.1109/ISCAIE51753.2021.9431791
Ming, L., Untong, N., Aliudin, N., & Osili, N. (2020). Mobile Health Apps on Covid-19 Launched in the Early Days of the Pandemic: Content Analysis and Review Corresponding Author. 8, 1–17. https://doi.org/10.2196/19796
Mohsin, J., Saleh, F., & Ali, A. (2020). Real-time Surveillance System to detect and analyzers the Suspects of Covid-19 patients by using IoT under edge computing techniques (RS-SYS). 2nd Al-Noor International Conference Scientist Technology NICST 2020, 68–73. https://doi.org/10.1109/NICST50904.2020.9280305
Mouter, N., Collewet, M., De Wit, G., Rotteveel, A., Lambooij, M., & Kessels, R. (2021). Societal Effects Are a Major Factor for the Uptake of the Coronavirus Disease 2019 (Covid-19) Digital Contact Tracing App in The Netherlands. Value Health 24(5), 658–667. https://doi.otg/10.1016/j.jval.2021.01.001
Organización Mundial de la Salud. (2020). Covid-19–Global. Disponible en: https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON305 (Acceso julio 2022).
Organización Panamericana de la Salud. (2020). El Covid-19 afectó el funcionamiento de los servicios de salud para enfermedades no transmisibles en las Américas. Disponible en: https://www.paho.org/es/noticias/17-6-2020-covid-19-afecto-funcionamiento-servicios-salud-para-enfermedades-no (Acceso julio 2022).
Ouerhani, N., Maalel, A., Ghézala, H., & Chouri, S. (2020). Smart Ubiquitous Chatbot for Covid-19 Assistance with Deep learning Sentiment Analysis Model during and after quarantine. 1–9. https://doi.org.10.21203/rs.3.rs-33343/v1
Pérez, M., Tejeda, J. J. G., & Guach, R. A. D. (2020). Características clínico-epidemiológicas de la Covid-19. Revista Habanera de Ciencias Médicas, 19(2), 1-15. Disponible en: http://www.revhabanera.sld.cu/index.php/rhab/article/view/3254/2505 (Acceso julio 2022).
Pluymaekers, N. A. H. A., Hermans, A. N. L., van der Velden, R. M. J., den Uijl, D. W., Vorstermans, B., Buskes, S., Hendriks, J. M., Vernooy, K., Crijns, H. J. G. M., & Linz, D. (2020). On-demand app-based rate and rhythm monitoring to manage atrial fibrillation through teleconsultations during COVID-19. International journal of cardiology. Heart & vasculature, 28, 100533. https://doi.org/10.1016/j.ijcha.2020.100533
Ravizza, A., Studies, F., Negri, M., Cabitza, F., & Ravizza, A. (2019). ScienceDirect Science Direct For Covid-19 Applications Enabling Extensive Epidemiological Studies A Proposal For Covid-19 Applications Enabling Extensive Epidemiological. Procedia Comput. Scientist, 181, 589–596. https://doi.org/10.1016/j.procs.2021.01.206
Reyes, T., & Reyes, T. (2020). A Mindfulness Mobile App for Traumatized Covid-19 Healthcare Workers and Recovered Patients : A Response to the Use of Digital Applications and Covid-19. Community Mental Health, 56(7), 1204–1205. https://doi.org/10.1007/s10597-020-00690-9
Sandeepa, C., Moremada, C., Dissanayaka, N., Gamage, T., & Liyanage, M. (2020). Social Interaction Tracking and Patient Prediction System for Potential Covid-19 Patients. 2020 IEEE 3rd 5G World Forum, 5GWF 2020, 13–18. https://doi.org/10.11809/5GWF49715.2020.9221268
Sarkar, A., & Ray, S. (2020). A Data Driven Decision Making and Contract Tracing App for Organizations to Combat Covid-19. CoNTESA 2020, 88–93. https://doi.org/10.1109/CoNTESA50436.2020.9302854
Sato, K., Sakata, R., Murayama, C., Yamaguchi, M., Matsuoka, Y., & Kondo, N. (2021). Changes in work and life patterns associated with depressive symptoms during the Covid-19 pandemic : an observational study of health app (CALO mama) users. 632–637. https://doi.org/10.1136/oemed-2020-106945
Saxena, T., Anuragi, P., Shinde, G., Yadav, N., & Digalwar, M. (2020). COWAR: An android based mobile application to help citizens and Covid-19 warriors. 4th IEEE Conference Information Community Technology. CICT 2020. https://doi.org/10.1109/CICT51604.2020.9312073
Soldano, G., Fraire, J., Finochietto, J., & Quiroga, R. (2021). Covid-19 mitigation by digital contact tracing and contact prevention (app-based social exposure warnings). Sci. Rep., 11(1), 1–8. https://doi.org/10.1038/s41598-021-93538-5
Tan, J., Sumpena, E., Zhuo, W., Zhao, Z., Liu, M., & Chan, S. (2020). IoT Geofencing for Covid-19 Home Quarantine Enforcement,” IEEE Internet Things Mag., 3(3), 24–29. https://doi-org/10.1109/iotm.0001.2000097
Tan, W., & Liu, J. (2020). Application of Face Recognition in Tracing Covid-19 Fever Patients and Close Contacts. 19th IEEE Int. Conf. Mach. Learn. Appl. ICMLA 2020, 1112–1116. https://doi.org/10.1109/ICMLA51294.2020.00179
Tran, C., & Nguyen, T. (2021). Health vs. privacy? The risk-risk tradeoff in using Covid-19 contact-tracing apps. Technology Society, 67, 101755. https://doi.org/10.1016/j.techsoc.2021.101755
Valtolina, S., Barricelli, B., & Di Gaetano, S. (2020). Communicability of traditional interfaces VS chatbots in healthcare and smart home domains. Behaviour & Information Technology, 39(1), 08–132. https://doi.org/10.1080/0144929X.2019.1637025
Vedaei, S. S., Fotovvat, A., Mohebbian, M. R., Rahman, G. M. E., Wahid, K. A., Babyn, P., Marateb, H. R., Mansourian, M., & Sami, R. (2020). COVID-SAFE: An IoT-Based System for Automated Health Monitoring and Surveillance in Post-Pandemic Life. IEEE access : practical innovations, open solutions, 8, 188538–188551. https://doi.org/10.1109/ACCESS.2020.3030194
Wang, H., Wang, L., & Wang, H. (2020). Market-level Analysis of Government-backed Covid-19 Contact Tracing Apps. IEEE/ACM Int. Conf. Autom. Softw. Eng. Work. ASEW, 35, 79–84. https://doi.org/10.1145/3417113.3422186
Whaiduzzaman, M, et al. (2020). A Privacy-Preserving Mobile and Fog Computing Framework to Trace and Prevent Covid-19 Community Transmissios. IEEE J. Biomed. Heal. Informatics, 24(12) 3564–3575. https://doi.org/10.1109/JBHI.2020.3026060
Zeinalipour, D. C., & Claramunt, C. (2020). Covid-19 mobile Contact Tracing apps (MCTA): A digital vaccine or a privacy demolition?. IEEE Int. Conf. Mob. Data Manag., 1–4. https://doi.org/10.1109/MDM48529.2020.00020
Zhang, M., & Smith, H. (2020). Potential Digital Tools for Psychological Symptoms associated with Covid-19. Journal Medical Internet Research., 22(8). https://doi.org/10.2196/19706
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2023 Boletín de Malariología y Salud Ambiental