Intervenciones genéticas de Aedes aegypti para el control de arbovirosis

Michelle Norma Antonio, Marco Fabriccio Traverso Huarcaya, Camila Alejandra Traverso Castillo, María Nelly Castillo Rodriguez

Resumen


La ineficacia de las estrategias actuales para el control químico de los mosquitos vectores plantea la necesidad de desarrollar enfoques novedosos, entre estos están las estrategias genéticas para reducir las poblaciones de mosquitos vectores o sustituirlos por aquellos que no son capaces de transmitir patógenos, esto se logra a través de herramientas moleculares que permiten la manipulación y transgénesis de genes. Las secuencias del genoma de los mosquitos y las bases de datos  de  marcadores de secuencias expresadas asociadas permiten investigaciones a gran escala para proporcionar nuevos conocimientos sobre las vías evolutivas, bioquímicas, genéticas, metabólicas y fisiológicas. Además, la genómica comparativa revela las bases de los mecanismos evolutivos con especial atención a las interacciones específicas entre vectores y patógenos. Se ha desarrollado tecnología de transgénesis para el mosquito de la fiebre amarilla y dengue, Aedes aegypti. Se ha logrado integración exitosa de  ADN exógeno en la línea germinal de este mosquito con los elementos transponibles. La disponibilidad de múltiples elementos y genes marcadores proporciona un poderoso conjunto de herramientas para investigar las propiedades biológicas básicas de este insecto vector, así como los materiales para desarrollar nuevas estrategias de control genético de poblaciones de mosquitos basadas en la técnica del insecto estéril. Una de estas estrategias consiste en liberar a la población machos esterilizados por radiación; otro, de integrar un gen letal dominante bajo el control de un promotor específico en hembras inmaduras. El uso de esta técnica de modificación genética constituirá una herramienta importante para el manejo integrado de vectores.


Palabras clave


Control de mosquitos, intervención genética, uso de técnicas genéticas, Aedes aegypti.

Texto completo:

PDF

Referencias


Adelman, Z. N., Jasinskiene, N., Onal, S., Juhn, J., Ashikyan, A., Salampessy, M., MacCauley, T., & James, A. A. (2007). nanos gene control DNA mediates developmentally regulated transposition in the yellow fever mosquito Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 9970–9975. https://doi.org/10.1073/pnas.0701515104

Allen, M. L., O'Brochta, D. A., Atkinson, P. W., & Levesque, C. S. (2001). Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae). Journal of medical entomology, 38(5), 701–710. https://doi.org/10.1603/0022-2585-38.5.701

Alphey L. (2002). Re-engineering the sterile insect technique. Insect biochemistry and molecular biology, 32(10), 1243–1247. https://doi.org/10.1016/s0965-1748(02)00087-5

Benedict, M. Q., James, A. A., & Collins, F. H. (2011). Safety of genetically modified mosquitoes. JAMA, 305(20), 2069–2070. https://doi.org/10.1001/jama.2011.676

Bushland, R. C., Lindquist, A. W., & Knipling, E. F. (1955). Eradication of Screw-Worms through Release of Sterilized Males. Science (New York), 122(3163), 287–288. https://doi.org/10.1126/science.122.3163.287

Calisher C. H. (2005). Persistent emergence of dengue. Emerging infectious diseases, 11(5), 738–739. https://doi.org/10.3201/eid1105.050195

Chen, X. G., Marinotti, O., Whitman, L., Jasinskiene, N., James, A. A., & Romans, P. (2007). The Anopheles gambiae vitellogenin gene (VGT2) promoter directs persistent accumulation of a reporter gene product in transgenic Anopheles stephensi following multiple bloodmeals. The American journal of tropical medicine and hygiene, 76(6), 1118–1124. https://doi.org/10.4269/ajtmh.2007.76.1118

Delprat, M. A., Stolar, C. E., Manso, F. C., & Cladera, J. L. (2002). Genetic stability of sexing strains based on the locus sw of Ceratitis capitata. Genetica, 116(1), 85–95. https://doi.org/10.1023/a:1020963709795

Ding, Y., Ortelli, F., Rossiter, L. C., Hemingway, J., & Ranson, H. (2003). The Anopheles gambiae glutathione transferase supergene family: annotation, phylogeny and expression profiles. BMC genomics, 4(1), 35. https://doi.org/10.1186/1471-2164-4-35

Franz, A. W., Sanchez-Vargas, I., Adelman, Z. N., Blair, C. D., Beaty, B. J., James, A. A., & Olson, K. E. (2006). Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 103(11), 4198–4203. https://doi.org/10.1073/pnas.0600479103

Grossman, G. L., Rafferty, C. S., Clayton, J. R., Stevens, T. K., Mukabayire, O., & Benedict, M. Q. (2001). Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect molecular biology, 10(6), 597–604. https://doi.org/10.1046/j.0962-1075.2001.00299.x

Gubler D. J. (2004). The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle?. Comparative immunology, microbiology and infectious diseases, 27(5), 319–330. https://doi.org/10.1016/j.cimid.2004.03.013

Guinovart, C., Navia, M. M., Tanner, M., & Alonso, P. L. (2006). Malaria: burden of disease. Current molecular medicine, 6(2), 137–140. https://doi.org/10.2174/156652406776055131

He, N., Botelho, J. M., McNall, R. J., Belozerov, V., Dunn, W. A., Mize, T., Orlando, R., & Willis, J. H. (2007). Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect biochemistry and molecular biology, 37(2), 135–146. https://doi.org/10.1016/j.ibmb.2006.10.011

Irvin, N., Hoddle, M. S., O'Brochta, D. A., Carey, B., & Atkinson, P. W. (2004). Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes. Proceedings of the National Academy of Sciences of the United States of America, 101(3), 891–896. https://doi.org/10.1073/pnas.0305511101

Ito, J., Ghosh, A., Moreira, L. A., Wimmer, E. A., & Jacobs-Lorena, M. (2002). Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature, 417(6887), 452–455. https://doi.org/10.1038/417452a

James A. A. (2005). Gene drive systems in mosquitoes: rules of the road. Trends in parasitology, 21(2), 64–67. https://doi.org/10.1016/j.pt.2004.11.004

Knipling, E. F. (1955). Possibilities of insect control or eradication through the use of sexually sterile males. Journal of Economic Entomology, 48(4), 459-462. Disponible en: https://academic.oup.com/jee/article-abstract/48/4/459/2205947?login=false (Acceso diciembre 2021).

Lambrechts, L., Koella, J. C., & Boëte, C. (2008). Can transgenic mosquitoes afford the fitness cost?. Trends in parasitology, 24(1), 4–7. https://doi.org/10.1016/j.pt.2007.09.009

Li, J., Riehle, M. M., Zhang, Y., Xu, J., Oduol, F., Gomez, S. M., Eiglmeier, K., Ueberheide, B. M., Shabanowitz, J., Hunt, D. F., Ribeiro, J. M., & Vernick, K. D. (2006). Anopheles gambiae genome reannotation through synthesis of ab initio and comparative gene prediction algorithms. Genome biology, 7(3), R24. https://doi.org/10.1186/gb-2006-7-3-r24

Marrelli, M. T., Moreira, C. K., Kelly, D., Alphey, L., & Jacobs-Lorena, M. (2006). Mosquito transgenesis: what is the fitness cost?. Trends in parasitology, 22(5), 197–202. https://doi.org/10.1016/j.pt.2006.03.004

Mayer, D. G., Atzeni, M. G., Stuart, M. A., Anaman, K. A., & Butler, D. G. (1998). Mating competitiveness of irradiated flies for screwworm fly eradication campaigns. Preventive veterinary medicine, 36(1), 1–9. https://doi.org/10.1016/s0167-5877(98)00078-6

Meats, A., Maheswaran, P., Frommer, M., & Sved, J. (2002). Towards a male-only release system for SIT with the Queensland fruit fly, Bactrocera tryoni, using a genetic sexing strain with a temperature-sensitive lethal mutation. Genetica, 116(1), 97–106. https://doi.org/10.1023/a:1020915826633

O'Brochta, D. A., & Atkinson, P. W. (2004). Transformation systems in insects. Methods in molecular biology (Clifton, N.J.), 260, 227–254. https://doi.org/10.1385/1-59259-755-6:227

Organización Panamericana de la Salud (OPS). (2019). Evaluación de las estrategias innovadoras para el control de Aedes aegypti: desafíos para su introducción y evaluación del impacto. Disponible en: https://iris.paho.org/bitstream/handle/10665.2/51376/9789275320969_spa.pdf?sequence=1&isAllowed=y (Acceso diciembre 2021).

Rendón, P., McInnis, D., Lance, D., & Stewart, J. (2004). Medfly (Diptera: Tephritidae) genetic sexing: large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala. Journal of economic entomology, 97(5), 1547-1553. https://doi.org/10.1603/0022-0493-97.5.1547

Robinson A. S. (2002). Genetic sexing strains in medfly, Ceratitis capitata, sterile insect technique programmes. Genetica, 116(1), 5–13. https://doi.org/10.1023/a:1020951407069

Robinson, A. S., Franz, G., & Atkinson, P. W. (2004). Insect transgenesis and its potential role in agriculture and human health. Insect biochemistry and molecular biology, 34(2), 113–120. https://doi.org/10.1016/j.ibmb.2003.10.004

Rushton, P. J., Reinstädler, A., Lipka, V., Lippok, B., & Somssich, I. E. (2002). Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. The Plant cell, 14(4), 749–762. https://doi.org/10.1105/tpc.010412

Sharma, V. P., Patterson, R. S., & Ford, H. R. (1972). A device for the rapid separation of male and female mosquito pupae. Bulletin of the World Health Organization, 47(3), 429–432. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2480716/ (Acceso noviembre 2021).

Shaw, W. R., & Catteruccia, F. (2019). Vector biology meets disease control: using basic research to fight vector-borne diseases. Nature microbiology, 4(1), 20–34. https://doi.org/10.1038/s41564-018-0214-7

Smith, R. C., Walter, M. F., Hice, R. H., O'Brochta, D. A., & Atkinson, P. W. (2007). Testis-specific expression of the beta2 tubulin promoter of Aedes aegypti and its application as a genetic sex-separation marker. Insect molecular biology, 16(1), 61–71. https://doi.org/10.1111/j.1365-2583.2006.00701.x

Strode, C., Wondji, C. S., David, J. P., Hawkes, N. J., Lumjuan, N., Nelson, D. R., Drane, D. R., Karunaratne, S. H., Hemingway, J., Black, W. C., 4th, & Ranson, H. (2008). Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect biochemistry and molecular biology, 38(1), 113–123. https://doi.org/10.1016/j.ibmb.2007.09.007

Terenius, O., Marinotti, O., Sieglaff, D., & James, A. A. (2008). Molecular genetic manipulation of vector mosquitoes. Cell host & microbe, 4(5), 417–423. https://doi.org/10.1016/j.chom.2008.09.002

Vreysen, M. J., Saleh, K. M., Ali, M. Y., Abdulla, A. M., Zhu, Z. R., Juma, K. G., Dyck, V. A., Msangi, A. R., Mkonyi, P. A., & Feldmann, H. U. (2000). Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. Journal of economic entomology, 93(1), 123–135. https://doi.org/10.1603/0022-0493-93.1.123

Waterhouse, R. M., Kriventseva, E. V., Meister, S., Xi, Z., Alvarez, K. S., Bartholomay, L. C., Barillas-Mury, C., Bian, G., Blandin, S., Christensen, B. M., Dong, Y., Jiang, H., Kanost, M. R., Koutsos, A. C., Levashina, E. A., Li, J., Ligoxygakis, P., Maccallum, R. M., Mayhew, G. F., Mendes, A., & Christophides, G. K. (2007). Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science (New York, N.Y.), 316(5832), 1738–1743. https://doi.org/10.1126/science.1139862

Wyss J. H. (2000). Screwworm eradication in the Americas. Annals of the New York Academy of Sciences, 916, 186–193. https://doi.org/10.1111/j.1749-6632.2000.tb05289.x

Yoshida, S., & Watanabe, H. (2006). Robust salivary gland-specific transgene expression in Anopheles stephensi mosquito. Insect molecular biology, 15(4), 403–410. https://doi.org/10.1111/j.1365-2583.2006.00645.x


Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2022 Boletín de Malariología y Salud Ambiental