Intervenciones genéticas de Aedes aegypti para el control de arbovirosis
Resumen
La ineficacia de las estrategias actuales para el control químico de los mosquitos vectores plantea la necesidad de desarrollar enfoques novedosos, entre estos están las estrategias genéticas para reducir las poblaciones de mosquitos vectores o sustituirlos por aquellos que no son capaces de transmitir patógenos, esto se logra a través de herramientas moleculares que permiten la manipulación y transgénesis de genes. Las secuencias del genoma de los mosquitos y las bases de datos de marcadores de secuencias expresadas asociadas permiten investigaciones a gran escala para proporcionar nuevos conocimientos sobre las vías evolutivas, bioquímicas, genéticas, metabólicas y fisiológicas. Además, la genómica comparativa revela las bases de los mecanismos evolutivos con especial atención a las interacciones específicas entre vectores y patógenos. Se ha desarrollado tecnología de transgénesis para el mosquito de la fiebre amarilla y dengue, Aedes aegypti. Se ha logrado integración exitosa de ADN exógeno en la línea germinal de este mosquito con los elementos transponibles. La disponibilidad de múltiples elementos y genes marcadores proporciona un poderoso conjunto de herramientas para investigar las propiedades biológicas básicas de este insecto vector, así como los materiales para desarrollar nuevas estrategias de control genético de poblaciones de mosquitos basadas en la técnica del insecto estéril. Una de estas estrategias consiste en liberar a la población machos esterilizados por radiación; otro, de integrar un gen letal dominante bajo el control de un promotor específico en hembras inmaduras. El uso de esta técnica de modificación genética constituirá una herramienta importante para el manejo integrado de vectores.
Palabras clave
Texto completo:
PDFReferencias
Adelman, Z. N., Jasinskiene, N., Onal, S., Juhn, J., Ashikyan, A., Salampessy, M., MacCauley, T., & James, A. A. (2007). nanos gene control DNA mediates developmentally regulated transposition in the yellow fever mosquito Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 9970–9975. https://doi.org/10.1073/pnas.0701515104
Allen, M. L., O'Brochta, D. A., Atkinson, P. W., & Levesque, C. S. (2001). Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae). Journal of medical entomology, 38(5), 701–710. https://doi.org/10.1603/0022-2585-38.5.701
Alphey L. (2002). Re-engineering the sterile insect technique. Insect biochemistry and molecular biology, 32(10), 1243–1247. https://doi.org/10.1016/s0965-1748(02)00087-5
Benedict, M. Q., James, A. A., & Collins, F. H. (2011). Safety of genetically modified mosquitoes. JAMA, 305(20), 2069–2070. https://doi.org/10.1001/jama.2011.676
Bushland, R. C., Lindquist, A. W., & Knipling, E. F. (1955). Eradication of Screw-Worms through Release of Sterilized Males. Science (New York), 122(3163), 287–288. https://doi.org/10.1126/science.122.3163.287
Calisher C. H. (2005). Persistent emergence of dengue. Emerging infectious diseases, 11(5), 738–739. https://doi.org/10.3201/eid1105.050195
Chen, X. G., Marinotti, O., Whitman, L., Jasinskiene, N., James, A. A., & Romans, P. (2007). The Anopheles gambiae vitellogenin gene (VGT2) promoter directs persistent accumulation of a reporter gene product in transgenic Anopheles stephensi following multiple bloodmeals. The American journal of tropical medicine and hygiene, 76(6), 1118–1124. https://doi.org/10.4269/ajtmh.2007.76.1118
Delprat, M. A., Stolar, C. E., Manso, F. C., & Cladera, J. L. (2002). Genetic stability of sexing strains based on the locus sw of Ceratitis capitata. Genetica, 116(1), 85–95. https://doi.org/10.1023/a:1020963709795
Ding, Y., Ortelli, F., Rossiter, L. C., Hemingway, J., & Ranson, H. (2003). The Anopheles gambiae glutathione transferase supergene family: annotation, phylogeny and expression profiles. BMC genomics, 4(1), 35. https://doi.org/10.1186/1471-2164-4-35
Franz, A. W., Sanchez-Vargas, I., Adelman, Z. N., Blair, C. D., Beaty, B. J., James, A. A., & Olson, K. E. (2006). Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 103(11), 4198–4203. https://doi.org/10.1073/pnas.0600479103
Grossman, G. L., Rafferty, C. S., Clayton, J. R., Stevens, T. K., Mukabayire, O., & Benedict, M. Q. (2001). Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect molecular biology, 10(6), 597–604. https://doi.org/10.1046/j.0962-1075.2001.00299.x
Gubler D. J. (2004). The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle?. Comparative immunology, microbiology and infectious diseases, 27(5), 319–330. https://doi.org/10.1016/j.cimid.2004.03.013
Guinovart, C., Navia, M. M., Tanner, M., & Alonso, P. L. (2006). Malaria: burden of disease. Current molecular medicine, 6(2), 137–140. https://doi.org/10.2174/156652406776055131
He, N., Botelho, J. M., McNall, R. J., Belozerov, V., Dunn, W. A., Mize, T., Orlando, R., & Willis, J. H. (2007). Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect biochemistry and molecular biology, 37(2), 135–146. https://doi.org/10.1016/j.ibmb.2006.10.011
Irvin, N., Hoddle, M. S., O'Brochta, D. A., Carey, B., & Atkinson, P. W. (2004). Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes. Proceedings of the National Academy of Sciences of the United States of America, 101(3), 891–896. https://doi.org/10.1073/pnas.0305511101
Ito, J., Ghosh, A., Moreira, L. A., Wimmer, E. A., & Jacobs-Lorena, M. (2002). Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature, 417(6887), 452–455. https://doi.org/10.1038/417452a
James A. A. (2005). Gene drive systems in mosquitoes: rules of the road. Trends in parasitology, 21(2), 64–67. https://doi.org/10.1016/j.pt.2004.11.004
Knipling, E. F. (1955). Possibilities of insect control or eradication through the use of sexually sterile males. Journal of Economic Entomology, 48(4), 459-462. Disponible en: https://academic.oup.com/jee/article-abstract/48/4/459/2205947?login=false (Acceso diciembre 2021).
Lambrechts, L., Koella, J. C., & Boëte, C. (2008). Can transgenic mosquitoes afford the fitness cost?. Trends in parasitology, 24(1), 4–7. https://doi.org/10.1016/j.pt.2007.09.009
Li, J., Riehle, M. M., Zhang, Y., Xu, J., Oduol, F., Gomez, S. M., Eiglmeier, K., Ueberheide, B. M., Shabanowitz, J., Hunt, D. F., Ribeiro, J. M., & Vernick, K. D. (2006). Anopheles gambiae genome reannotation through synthesis of ab initio and comparative gene prediction algorithms. Genome biology, 7(3), R24. https://doi.org/10.1186/gb-2006-7-3-r24
Marrelli, M. T., Moreira, C. K., Kelly, D., Alphey, L., & Jacobs-Lorena, M. (2006). Mosquito transgenesis: what is the fitness cost?. Trends in parasitology, 22(5), 197–202. https://doi.org/10.1016/j.pt.2006.03.004
Mayer, D. G., Atzeni, M. G., Stuart, M. A., Anaman, K. A., & Butler, D. G. (1998). Mating competitiveness of irradiated flies for screwworm fly eradication campaigns. Preventive veterinary medicine, 36(1), 1–9. https://doi.org/10.1016/s0167-5877(98)00078-6
Meats, A., Maheswaran, P., Frommer, M., & Sved, J. (2002). Towards a male-only release system for SIT with the Queensland fruit fly, Bactrocera tryoni, using a genetic sexing strain with a temperature-sensitive lethal mutation. Genetica, 116(1), 97–106. https://doi.org/10.1023/a:1020915826633
O'Brochta, D. A., & Atkinson, P. W. (2004). Transformation systems in insects. Methods in molecular biology (Clifton, N.J.), 260, 227–254. https://doi.org/10.1385/1-59259-755-6:227
Organización Panamericana de la Salud (OPS). (2019). Evaluación de las estrategias innovadoras para el control de Aedes aegypti: desafíos para su introducción y evaluación del impacto. Disponible en: https://iris.paho.org/bitstream/handle/10665.2/51376/9789275320969_spa.pdf?sequence=1&isAllowed=y (Acceso diciembre 2021).
Rendón, P., McInnis, D., Lance, D., & Stewart, J. (2004). Medfly (Diptera: Tephritidae) genetic sexing: large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala. Journal of economic entomology, 97(5), 1547-1553. https://doi.org/10.1603/0022-0493-97.5.1547
Robinson A. S. (2002). Genetic sexing strains in medfly, Ceratitis capitata, sterile insect technique programmes. Genetica, 116(1), 5–13. https://doi.org/10.1023/a:1020951407069
Robinson, A. S., Franz, G., & Atkinson, P. W. (2004). Insect transgenesis and its potential role in agriculture and human health. Insect biochemistry and molecular biology, 34(2), 113–120. https://doi.org/10.1016/j.ibmb.2003.10.004
Rushton, P. J., Reinstädler, A., Lipka, V., Lippok, B., & Somssich, I. E. (2002). Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. The Plant cell, 14(4), 749–762. https://doi.org/10.1105/tpc.010412
Sharma, V. P., Patterson, R. S., & Ford, H. R. (1972). A device for the rapid separation of male and female mosquito pupae. Bulletin of the World Health Organization, 47(3), 429–432. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2480716/ (Acceso noviembre 2021).
Shaw, W. R., & Catteruccia, F. (2019). Vector biology meets disease control: using basic research to fight vector-borne diseases. Nature microbiology, 4(1), 20–34. https://doi.org/10.1038/s41564-018-0214-7
Smith, R. C., Walter, M. F., Hice, R. H., O'Brochta, D. A., & Atkinson, P. W. (2007). Testis-specific expression of the beta2 tubulin promoter of Aedes aegypti and its application as a genetic sex-separation marker. Insect molecular biology, 16(1), 61–71. https://doi.org/10.1111/j.1365-2583.2006.00701.x
Strode, C., Wondji, C. S., David, J. P., Hawkes, N. J., Lumjuan, N., Nelson, D. R., Drane, D. R., Karunaratne, S. H., Hemingway, J., Black, W. C., 4th, & Ranson, H. (2008). Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect biochemistry and molecular biology, 38(1), 113–123. https://doi.org/10.1016/j.ibmb.2007.09.007
Terenius, O., Marinotti, O., Sieglaff, D., & James, A. A. (2008). Molecular genetic manipulation of vector mosquitoes. Cell host & microbe, 4(5), 417–423. https://doi.org/10.1016/j.chom.2008.09.002
Vreysen, M. J., Saleh, K. M., Ali, M. Y., Abdulla, A. M., Zhu, Z. R., Juma, K. G., Dyck, V. A., Msangi, A. R., Mkonyi, P. A., & Feldmann, H. U. (2000). Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. Journal of economic entomology, 93(1), 123–135. https://doi.org/10.1603/0022-0493-93.1.123
Waterhouse, R. M., Kriventseva, E. V., Meister, S., Xi, Z., Alvarez, K. S., Bartholomay, L. C., Barillas-Mury, C., Bian, G., Blandin, S., Christensen, B. M., Dong, Y., Jiang, H., Kanost, M. R., Koutsos, A. C., Levashina, E. A., Li, J., Ligoxygakis, P., Maccallum, R. M., Mayhew, G. F., Mendes, A., & Christophides, G. K. (2007). Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science (New York, N.Y.), 316(5832), 1738–1743. https://doi.org/10.1126/science.1139862
Wyss J. H. (2000). Screwworm eradication in the Americas. Annals of the New York Academy of Sciences, 916, 186–193. https://doi.org/10.1111/j.1749-6632.2000.tb05289.x
Yoshida, S., & Watanabe, H. (2006). Robust salivary gland-specific transgene expression in Anopheles stephensi mosquito. Insect molecular biology, 15(4), 403–410. https://doi.org/10.1111/j.1365-2583.2006.00645.x
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2022 Boletín de Malariología y Salud Ambiental