Eficacia y seguridad del peginterferón lambda para la Covid-19, indicios de un nuevo antiviral

Eduardo Tuta-Quintero, Camila Martinez Ayala, Ana María Santos

Resumen


Introducción: Los interferones son una familia de citocinas que actúan sobre la respuesta inmune innata del epitelio respiratorio, lugar de amplia invasión viral como el SARS-CoV-2. Objetivo: analizar la evidencia médica publicada sobre la eficacia y seguridad del interferón tipo III en el tratamiento de pacientes con COVID-19. Material y métodos: Revisión exploratoria de la literatura que incluyó PubMed hasta el 10 de marzo del 2021. Se incluyeron registros de ensayos clínicos de la Red de Registros de la organización mundial de la salud y publicaciones teóricas y publicaciones con datos empíricos en idioma español e inglés. Resultados: Se incluyeron 16 publicaciones y 4 registros de ensayos clínicos. Entre los documentos incluidos se encuentran revisiones de la literatura (n=7), estudios in vitro (n=4), ensayos clínicos aleatorizados (n=2), estudios in vivo (n=1), cartas al editor(n=1) y artículo de posición (n=1). Los 4 ensayos clínicos registrados se encontraron en U.S. National Library of Medicine. Conclusión: Únicamente se reporta un ensayo clínico publicado que muestran beneficios del interferón tipo III en pacientes ambulatorios con COVID-19. Cuatro registros de ensayos clínicos en curso permitirán conocer más sobre la eficacia y seguridad del PGL-1.

Palabras clave


Peginterferón lambda, Interferón, Interferón tipo III, COVID-19, SARS-CoV-2.

Texto completo:

PDF

Referencias


Andreakos E., Zanoni I. & Galani I.E. (2019). Lambda interferons come to light: dual function cytokines mediating antiviral immunity and damage control. Curr Opin Immunol; 56:67-75. https://doi.org/10.1016/j.coi.2018.10.007.

Arksey H. & O’Malley L. (2005). Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 8:19–32. https://doi.org/10.1080/1364557032000119616.

Busnadiego I., Fernbach S., Pohl M.O., Karakus U., Huber M., Trkola A., Stertz S. & Hale B.G. (2020). Antiviral Activity of Type I, II, and III Interferons Counterbalances ACE2 Inducibility and Restricts SARS-CoV-2. mBio;11(5): e01928-20. https://doi.org/10.1128/mBio.01928-20. Chan H., Ahn S.H., Chang T.T., Peng C.Y., Wong D., Coffin C.S., Lim S.G., Chen P.J., Janssen H., Marcellin P., Serfaty L., Zeuzem S., Cohen D., Critelli L., Xu D., Wind-Rotolo M., Cooney E. & LIRA-B Study Team (2016). Peginterferon lambda for the treatment of HBeAg-positive chronic hepatitis B: A randomized phase 2b study (LIRA-B). Journal of hepatology. 64(5):1011–1019. https://doi.org/10.1016/j.jhep.2015.12.018. Dinnon K.H. Leist S.R., Schäfer A., Edwards C.E., Martinez D.R., Montgomery S.A., West A., Yount B.L. Jr, Hou Y.J., Adams L.E., Gully K.L., Brown A.J., Huang E., Bryant M.D., Choong I.C., Glenn J.S., Gralinski L.E., Sheahan T.P. & Baric R.S. (2020). A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature. 586(7830): 560–566. https://doi.org/10.1038/s41586-020-2708-8 Feld J.J., Kandel C., Biondi M.J., Kozak R.A., Zahoor M.A., Lemieux C., Borgia S.M., Boggild A.K., Powis J., McCready J., Tan D.H.S., Chan T., Coburn B., Kumar D., Humar A., Chan A., O'Neil B., Noureldin S., Booth J., Hong R., Smookler D., Aleyadeh W., Patel A., Barber B., Casey J., Hiebert R., Mistry H., Choong I., Hislop C., Santer D.M., Lorne Tyrrell D., Glenn J.S., Gehring A.J., Janssen H.L.A. & Hansen B.E. (2021). Peginterferon lambda for the treatment of outpatients with COVID-19: a phase 2, placebo-controlled randomised trial. Lancet Respir Med. S2213-2600(20)30566-X. https://doi.org/10.1016/S2213-2600(20)30566-X. Felgenhauer U., Schoen A., Gad H.H., Hartmann R., Schaubmar A.R., Failing K., Drosten C. & Weber F. (2020). Inhibition of SARS-CoV-2 by type I and type III interferons. J Biol Chem. 295(41):13958-13964. https://doi.org/10.1074/jbc.AC120.013788.

Gaspari V., Zengarini C., Greco S., Vangeli V. & Mastroianni A. (2020). Side effects of ruxolitinib in patients with SARS-CoV-2 infection: Two case reports. Int J Antimicrob Agents. 56(2):106023. https://doi.org/10.1016/j.ijantimicag.2020.106023.

Grudniewicz A., Nelson M., Kuluski K., Lui V., Cunningham H.V, X Nie J., Colquhoun H., Wodchis W.P., Taylor S., Loganathan M. & Upshur, R.E. (2016). Establecimiento de objetivos de tratamiento para pacientes complejos: protocolo para una revisión del alcance. BMJ abierto. 6 (5), e011869. https://doi.org/10.1136/bmjopen-2016-011869.

Guan W.J, Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., W., Liu L., Shan H., Lei C., Hui D.S.C, Du B., Li L., Zeng G., Yuen K.Y., Chen R., Tang C., Wang T., Chen P., Xiang J., Li S., Wang J.L., Liang Z., Peng Y., Wei L.,Liu Y., Hu Y-h., Peng P., Wang J.M., Liu J., Chen Z., Li G., Zheng Z., Qiu S., Luo J., Ye C., Zhu S. & Zhong N. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med.;382(18):1708-1720. https://doi.org/10.1056/NEJMoa2002032.

Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J.† & Cao B.† (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.

Hurst M. & Faulds D. (2020). Lopinavir. Drugs. 60(6):1371-9; discussion 1380-1. doi: 10.2165/00003495-200060060-00009. PMID: 11152017.

Jafarzadeh A., Nemati M., Saha B., Bansode Y.D. & Jafarzadeh S. (2020). Protective Potentials of Type III Interferons in COVID-19 Patients: Lessons from Differential Properties of Type I- and III Interferons. Viral Immunol. https://doi.org/10.1089/vim.2020.0076. Jagannathan P., Andrews J.R., Bonilla H., Hedlin H., Jacobson K.B., Balasubramanian V., Purington N., Kamble S., de Vries C.R., Quintero O., Feng K., Ley C., Winslow D., Newberry J., Edwards K., Hislop C., Choong I., Maldonado Y., Glenn J., Bhatt A., Blish C., Wang T., Khosla C., Pinsky B.A., Desai M., Parsonnet J. &, Singh U. (2021). Peginterferon Lambda-1a for treatment of outpatients with uncomplicated COVID-19: a randomized placebo-controlled trial. Nat Commun. 12(1):1967. https://doi.org/10.1038/s41467-021-22177-1.

Jothimani D., Venugopal R., Abedin M.F., Kaliamoorthy I. & Rela M. (2020). COVID-19 and the liver. J Hepatol.73(5):1231-1240. https://doi.org/10.1016/j.jhep.2020.06.006. Kumagai Y., Takeuchi O., Kato H., Kumar H., Matsui K., Morii E., Aozasa K., Kawai T., & Akira S. (2007). Alveolar macrophages are the primary interferon-alpha producer in pulmonary infection with RNA viruses. Immunity. 27(2):240–252. https://doi.org/10.1016/j.immuni.2007.07.013.

Lai C.C., Ko W.C., Lee P.I., Jean S.S. & Hsueh P.R. (2020). Extra-respiratory manifestations of COVID-19. Int J Antimicrob Agents;56(2):106024. https://doi.org/10.1016/j.ijantimicag.2020.106024.

Lazear H.M., Schoggins J.W. & Diamond M.S. (2019). Shared and Distinct Functions of Type I and Type III Interferons. Immunity;50(4):907-923. https://doi.org/10.1016/j.immuni.2019.03.025.

Levac D., Colquhoun H. & O’Brien K.K. (2010). Scoping studies: advancing the methodology. Implement Sci. 5:69. https://doi.org/10.1186/1748-5908-5-69. Neubauer A., Wiesmann T., Vogelmeie, C.F., Mack E., Skevaki C., Gaik C., Keller C., Figiel J., Sohlbach K., Rolfes C., Renz H., Wulf H. & Burchert A. (2020). Ruxolitinib for the treatment of SARS-CoV-2 induced acute respiratory distress syndrome (ARDS). Leukemia. 34(8): 2276–2278. https://doi.org/10.1038/s41375-020-0907-9. Omrani A.S., Saad M.M., Baig K., Bahloul A., Abdul-Matin M., Alaidaroos A.Y., Almakhlafi G.A., Albarrak M.M., Memish Z.A. & Albarrak A.M. (2014). Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis. 14(11):1090-1095. https://doi.org/10.1016/S1473-3099(14)70920-X. Pervolaraki K., Rastgou Talemi S., Albrecht D., Bormann F., Bamford C., Mendoza J.L., Garcia K.C., McLauchlan J., Höfer T., Stanifer M.L., & Boulant S. (2018). Differential induction of interferon stimulated genes between type I and type III interferons is independent of interferon receptor abundance. PLoS pathogens. 14(11):e1007420. https://doi.org/10.1371/journal.ppat.1007420.

Portela Sousa C. & Brites C. (2020). Immune response in SARS-CoV-2 infection: the role of interferons types I and type III. Braz J Infect Dis. 24(5):428-433. https://doi.org/10.1016/j.bjid.2020.07.011. Prokunina-Olsson L., Alphonse N., Dickenson R.E., Durbin J.E., Glenn J.S., Hartmann R., Kotenko S.V., Lazear H.M., O'Brien T.R., Odendall C., Onabajo, O.O., Piontkivska H., Santer D.M., Reich N.C., Wack A., & Zanoni I. (2020). COVID-19 and emerging viral infections: The case for interferon lambda. The Journal of experimental medicine. 217(5):e20200653. https://doi.org/10.1084/jem.20200653.

Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C., Ma K., Shang K., Wang W. & Tian D.S. (2020). Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 71(15):762-768. https://doi.org/10.1093/cid/ciaa248. Sanford J. A., Nogiec C. D., Lindholm M. E., Adkins J. N., Amar D., Dasari S., Drugan J. K., Fernández F. M., Radom-Aizik S., Schenk S., Snyder M. P., Tracy R. P., Vanderboom P., Trappe S., Walsh M. J. & MolecularTransducers of Physical Activity Consortium (2020). Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell. 181(7):1464–1474. https://doi.org/10.1016/j.cell.2020.06.004.

Schoggins J.W. (2019). Interferon-Stimulated Genes: What Do They All Do? Annu Rev Viro. 6(1):567-584. https://doi.org/10.1146/annurev-virology-092818-015756. Tricco A.C., Lillie E., Zarin W., O’Brien K.K., Colquhoun H. Levac D., Moher D., Peters M.D.J., Horsley T., Weeks L., Hempel S., Akl E.A., Chang C., McGowan J., Stewart L., Hartling L., Aldcroft A., Wilson M.G., Garritty C., Lewin S., Godfrey C.M., Macdonald M.T., Langlois E.V., Soares-Weiser K., Moriarty J., Clifford T., Tunçalp Ö. & Straus S.E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 169:467. https://doi.org/10.7326/M18-0850.

Tuta-Quintero E., Vega-Corredor M.C., Perdomo-Rodríguez L.S., & Pimentel J. (2021). Colchicina, perspectivas de un viejo amigo para la reumatología en la COVID-19: una revisión exploratoria. Revista Colombiana de Reumatología, Advance online publication. https://doi.org/10.1016/j.rcreu.2021.02.0029. Vanderheiden A., Ralfs P., Chirkova T., Upadhyay A.A., Zimmerman M.G., Bedoya S., Aoued H., Tharp G.M., Pellegrini K.L., Manfredi C., Sorscher E., Mainou B., Lobby J.L., Kohlmeier J.E., Lowen A.C., Shi P.Y., Menachery V.D., Anderson L.J., Grakoui A., Bosinger S.E. & Suthar M.S. (2020). Type I and Type III Interferons Restrict SARS-CoV-2 Infection of Human Airway Epithelial Cultures. J Virol. 94(19): e00985-20. https://doi.org/10.1128/JVI.00985-20.

Wells A.I. & Coyne C.B. (2018). Type III Interferons in Antiviral Defenses at Barrier Surfaces. Trends Immunol. 39(10):848-858. https://doi.org/10.1016/j.it.2018.08.008.

WHO Solidarity Trial Consortium, Pan H., Peto R., Henao-Restrepo A.M., Preziosi M.P., Sathiyamoorthy V., Abdool Karim Q., Alejandria M.M., Hernández García C., Kieny M.P., Malekzadeh R., Murthy S., Reddy,K.S., Roses Periago M., Abi Hanna P., Ader F., Al-Bader A.M., Alhasawi A., Allum E., Alotaibi A., Alvarez-Moreno C.A., Appadoo S., Asiri A., Aukrust P., Barratt-Due A., Bellani S., Branca M., Cappel-Porter H.B.C., Cerrato N., Chow T.S., Como N., Eustace J., García P.J., Godbole S., Gotuzzo E., Griskevicius L., Hamra R., Hassan M., Hassany M., Hutton D., Irmansyah I., Jancoriene L., Kirwan J., Kumar S., Lennon P., Lopardo G., Lydon P., Magrini N., Maguire T., Manevska S., Manuel O., McGinty S., Medina M.T., Mesa Rubio M.L., Miranda-Montoya M.C., Nel J., Nunes E.P., Perola M., Portolés A., Rasmin M.R., Raza A., Rees H., Reges P.P.S., Rogers C.A., Salami K., Salvadori M.I., Sinani N., Sterne J.A.C., Stevanovikj M., Tacconelli E., Tikkinen K.A.O., Trelle S., Zaid H., Røttingen J.A. & Swaminathan S. (2021). Repurposed Antiviral Drugs for Covid-19 - Interim WHO Solidarity Trial Results. The New England journal of medicine, 384(6), 497–511. https://doi.org/10.1056/NEJMoa20231847. Eastman RT, Roth JS, Brimacombe KR, Simeonov A, Shen M, Patnaik S, et al. (2020). Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Central Science; 6:672–83. https://doi.org/10.1021/acscentsci.0c00489.

World Health Organization (2020). WHO Registry Network. Disponible en: https://www.who.int/ictrp/network/primary/en/ (Acceso marzo 2021).

Ye L., Schnepf D. & Staeheli P. (2019). Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat. Rev. Immunol; 19, 614–625. https://doi.org/10.1038/s41577-019-0182-z.

Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J.† & Cao B.† (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.

Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Phil D. & Tan W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med.; 24. https://doi.org/10.1056/NEJMoa2001017.


Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2021 Boletín de Malariología y Salud Ambiental