Luz ultravioleta C: una alternativa eficiente contra la pandemia
Resumen
Palabras clave
Texto completo:
PDFReferencias
Ahmad, S. I., Christensen, L., & Baron, E. (2017). History of UV Lamps, Types, and Their Applications. En Advances in Experimental Medicine and Biology (Vol. 996: pp. 3-11). Disponible en: https://doi.org/10.1007/978-3-319-56017-5_1.
Arito, H., Takahashi, M., Iwasaki, T., & Uchiyama, I. (1997). Age-related changes in ventilatory and heart rate responses to acute ozone exposure in the conscious rat. Industrial Health, 35(1): 78-86. Disponible en: https://doi.org/10.2486/indhealth.35.78.
Bachmann, L. (2020a). IV Simposio de Fotobiofísica - UV e Virus: Dosimetria Otica de Radiações. Universidade de São Paulo. Disponible en: https://youtu.be/6TtH8f9UiH0 (Acceso marzo 2021).
Bachmann, L. (2020b). IV Simposio de Fotobiofísica - UV e Vírus: uso de UVC em ambientes públicos. Universidade de São Paulo. Disponible en: https://youtu.be/gszFyqaDbaI (Acceso marzo 2021).
Beaudry, M. S., Frederick, J. C., Lott, M. E. J., Norfolk, W. A., Glenn, T. C., & Lipp, E. K. (2020). Effectiveness of an Ozone Disinfecting and Sanitizing Cabinet to Decontaminate a Surrogate Virus for SARS-CoV-2 on N-95. Masks. medRxiv, 2020.11.04.20226233. Disponible en:
https://doi.org/https://doi.org/10.1101/2020.11.04.20226233.
Buonanno, M., Randers-Pehrson, G., Bigelow, A. W., Trivedi, S., Lowy, F. D., Spotnitz, H. M., Hammer, S. M., & Brenner, D. J. (2013). 207-nm UV Light - A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. I: In Vitro Studies. PLoS ONE, 8(10): e76968. Disponible en
https://doi.org/10.1371/journal.pone.0076968.
Buonanno, M., Welch, D., Shuryak, I., & Brenner, D. J. (2020). Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Scientific Reports, 10(1): 10285. Disponible en:
https://doi.org/10.1038/s41598-020-67211-2.
Cabrera Morales, C. M., & López-Nevot, M. A. (2006). Efectos de la radiación ultravioleta (UV) en la inducción de mutaciones de p53 en tumores de piel. Oncología (Barcelona), 29(7): 25-32. Disponible en: https://doi.org/10.4321/S0378-48352006000700003.
Cadet, J., & Douki, T. (2018). Formation of UV-induced DNA damage contributing to skin cancer development. Photochemical & Photobiological Sciences, 17(12): 1816-1841. Disponible
en:https://doi.org/10.1039/C7PP00395A.
Chevrefils, G., Caron, É., Wright, H., & Sakamoto, G. (2006). UV dose required to achieve incremental log inactivation of bacteria, protozoa and viruses. IUVA News, 8(1): 38-45. Disponible en:
https://www.iuvanews.com/stories/pdf/archives/080104Cairns_Article_2006.pdf.
Cooper, G. M., & Hausman, R. (2013). The Cell: A Molecular Approoach (Sinauer Associates (6th ed). Disponible en: https://www.amazon.com/-/es/Geoffrey-M-Cooper/dp/0878939644.
Cornelia, R., & Warburton, P. R. (2017). Assessing hydrogen peroxide vapor exposure from hospital sterilizers. Journal of Occupational and Environmental Hygiene, 14(9): D150-D157. Disponible en:
https://doi.org/10.1080/15459624.2017.1335401.
Darnell, M. E. R., Subbarao, K., Feinstone, S. M., & Taylor, D. R. (2004). Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. Journal of Virological Methods, 121(1): 85-91. Disponible en: https://doi.org/10.1016/j.jviromet.2004.06.006.
Derraik, J. G. B., Anderson, W. A., Connelly, E. A., & Anderson, Y. C. (2020). Rapid Review of SARS-CoV-1 and SARS-CoV-2 Viability, Susceptibility to Treatment, and the Disinfection and Reuse of PPE, Particularly Filtering Facepiece Respirators. International Journal of Environmental Research and Public Health, 17(17):6117. Disponible en: https://doi.org/10.3390/ijerph17176117.
Dimofte, A., Finlay, J. C., & Zhu, T. C. (2005). A method for determination of the absorption and scattering properties interstitially in turbid media. Physics in Medicine and Biology, 50(10): 2291-2311. Disponible en: https://doi.org/10.1088/0031-9155/50/10/008.
Duan, S. M., Zhao, X. S., Wen, R. F., Huang, J. J., Pi, G. H., Zhang, S. X., Han, J., Bi, S. L., Ruan, L., & Dong, X. P. (2003). Stability of SARS Coronavirus in Human Specimens and Environment and Its Sensitivity to Heating and UV Irradiation. Biomedical and Environmental Sciences, 16(3): 246-255. Disponible en: https://pubmed.ncbi.nlm.nih.gov/14631830/.
Fernandez-Oliveras, A., Rubino, M., & Perez, M. M. (2013). Scattering and absorption properties of biomaterials for dental restorative applications. Journal of the European Optical Society: Rapid Publications, 8: 13056. Disponible en: https://doi.org/10.2971/jeos.2013.13056.
García de Abajo, F. J., Hernández, R. J., Kaminer, I., Meyerhans, A., Rosell-Llompart, J., & Sanchez-Elsner, T. (2020). Back to Normal: An Old Physics Route to Reduce SARS-CoV-2 Transmission in Indoor Spaces. ACS Nano, 14(7): 7704-7713. Disponible en: https://doi.org/10.1021/acsnano.0c04596.
Gorbunov, B. (2020). Aerosol particles laden with COVID-19 travel over 30m distance. Preprints, 1-18. Disponible en: https://doi.org/10.20944/preprints202004.0546.v2.
Heilingloh, C. S., Aufderhorst, U. W., Schipper, L., Dittmer, U., Witzke, O., Yang, D., Zheng, X., Sutter, K., Trilling, M., Alt, M., Steinmann, E., & Krawczyk, A. (2020). Susceptibility of SARS-CoV-2 to UV irradiation. American Journal of Infection Control, 48(10): 1273-1275. Disponible en: https://doi.org/10.1016/j.ajic.2020.07.031.
Heßling, M., Hönes, K., Vatter, P., & Lingenfelder, C. (2020). Ultraviolet irradiation doses for coronavirus inactivation - review and analysis of coronavirus photoinactivation studies. GMS hygiene and infection control, 15: 1-8.Disponible en: https://doi.org/10.3205/dgkh000343.
Horton, L., Torres, A. E., Narla, S., Lyons, A. B., Kohli, I., Gelfand, J. M., Ozog, D. M., Hamzavi, I. H., & Lim, H. W. (2020). Spectrum of virucidal activity from ultraviolet to infrared radiation. Photochemical & Photobiological Sciences, 19(10): 1262-1270. Disponible en: https://doi.org/10.1039/D0PP00221F.
Kannan, S., Subbaram, K., Ali, S., & Kannan, H. (2020). Molecular Characterization and Amino Acid Homology of Nucleocapsid (N) Protein in SARS-CoV-1, SARS-CoV-2, MERS-CoV, and Bat Coronavirus. Journal of Pure and Applied Microbiology, 14(suppl 1): 757-763. Disponible en: https://doi.org/10.22207/JPAM.14.SPL1.13.
Kenney, P., Chan, B., Kortright, K., Cintron, M., Havill, N., Russi, M., Epright, J., Lee, L., Balcezak, T., & Martinello, R. (2020). Hydrogen Peroxide Vapor sterilization of N95 respirators for reuse. Preprints, 617: 1-6. Disponible en: https://doi.org/10.1101/2020.03.24.20041087.
Kim, S.-J., Kim, D.-K., & Kang, D.-H. (2016). Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese. Applied and Environmental Microbiology, 82(1): 11-17. Disponible en: https://doi.org/10.1128/AEM.02092-15.
Lin, L., Cook, D. N., Wiesehahn, G. P., Alfonso, R., Behrman, B., Cimino, G. D., Corten, L., Damonte, P. B., Dikeman, R., Dupuis, K., Fang, Y. M., Hanson, C. V., Hearst, J. E., Lin, C. Y., Londe, H. F., Metchette, K., Nerio, A. T., Pu, J. T., Reames, A. A., … Corash, L. (1997). Photochemical inactivation of viruses and bacteria in platelet concentrates by use of a novel psoralen and long-wavelength ultraviolet light. Transfusion, 37(4): 423-435. Disponible en: https://doi.org/10.1046/j.1537-2995.1997.37497265344.x.
Mackenzie, D. (2020). Ultraviolet Light Fights New Virus. Engineering, 6(8), 851-853. Disponible en:
https://doi.org/10.1016/j.eng.2020.06.009.
Matrajt, L., & Leung, T. (2020). Evaluating the Effectiveness of Social Distancing Interventions to Delay or Flatten the Epidemic Curve of Coronavirus Disease. Emerging Infectious Diseases, 26(8): 1740-1748. Disponible en: https://doi.org/10.3201/eid2608.201093.
Matthes, R. (2004). Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Physics, 87(2): 171-186. Disponible en:
https://doi.org/10.1097/00004032-200408000-00006.
Mbonimpa, E. G., Blatchley, E. R., Applegate, B., & Harper, W. F. (2018). Ultraviolet A and B wavelength-dependent inactivation of viruses and bacteria in the water. Journal of Water and Health, 16(5): 796-806. Disponible en: https://doi.org/10.2166/wh.2018.071.
Mishra, B. (2020). Is ‘FAR UVC’ the Nearest Solution for Pandemic Containment? Journal of Advanced Research in Medical Science & Technology, 7(03): 27-31. Disponible en: https://doi.org/10.24321/2394.6539.202014.
Mittal, R., Ni, R., & Seo, J.-H. (2020). The flow physics of COVID-19. Journal of Fluid Mechanics, 894: F2-1-F2-14. https://doi.org/10.1017/jfm.2020.330.
Naunovic, Z., Lim, S., & Blatchley, E. R. (2008). Investigation of microbial inactivation efficiency of a UV disinfection system employing an excimer lamp. Water Research, 42(19): 4838-4846. Disponible en: https://doi.org/10.1016/j.watres.2008.09.001.
Pavez Ulloa, F. J. (2009). Agentes físicos superficiales y dolor. Análisis de su eficacia a la luz de la evidencia científica. Revista de la Sociedad Española del Dolor, 16(3): 182-189. Disponible en: https://doi.org/10.1016/S1134-8046(09)71009-2.
Rauth, A. M. (1965). The Physical State of Viral Nucleic Acid and the Sensitivity of Viruses to Ultraviolet Light. Biophysical Journal, 5(3): 257-273. Disponible en: https://doi.org/10.1016/S0006-3495(65)86715-7.
Saini, V., Sikri, K., Batra, S. D., Kalra, P., & Gautam, K. (2020). Development of a highly effective low-cost vaporized hydrogen peroxide-based method for disinfection of personal protective equipment for their selective reuse during pandemics. Gut Pathogens, 12(1): 1-11. Disponible en: https://doi.org/10.1186/s13099-020-00367-4.
Schalk, S., Adam, V., Arnold, E., & Brieden, K. (2006). UV-lamps for disinfection and advanced oxidation–Lamp types, technologies and applications. IUVA news, 8(1): 32-37. Disponible en:
http://iuva.org/sites/default/files/member/news/IUVA_news/Vol08/Issue1/SchalkArticleIUVANewsVol8No1.pdf.
Schmid, F.-X. (2001). Biological Macromolecules: UV-visible Spectrophotometry. En Encyclopedia of Life Sciences (p. 4). John Wiley & Sons, Ltd. Disponible en: https://doi.org/10.1038/npg.els.0003142.
Seminara, G., Carli, B., Forni, G., Fuzzi, S., Mazzino, A., & Rinaldo, A. (2020). Biological fluid dynamics of airborne COVID-19 infection. Rendiconti Lincei. Scienze Fisiche e Naturali, 31(3): 505-537. Disponible en: https://doi.org/10.1007/s12210-020-00938-2.
Simmons, S. E., Carrion, R., Alfson, K. J., Staples, H. M., Jinadatha, C., Jarvis, W. R., Sampathkumar, P., Chemaly, R. F., Khawaja, F., Povroznik, M., Jackson, S., Kaye, K. S., Rodriguez, R. M., & Stibich, M. A. (2021). Deactivation of SARS-CoV-2 with pulsed-xenon ultraviolet light: Implications for environmental COVID-19 control. Infection Control & Hospital Epidemiology, 42(2): 127-130. Disponible en: https://doi.org/10.1017/ice.2020.399.
Tseng, C.-C., & Li, C.-S. (2005). Inactivation of Virus-Containing Aerosols by Ultraviolet Germicidal Irradiation. Aerosol Science and Technology, 39(12): 1136-1142. Disponible en:
https://doi.org/10.1080/02786820500428575.
Van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., & Munster, V. J. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. New England Journal of Medicine, 382(16): 1564-1567. Disponible en: https://doi.org/10.1056/NEJMc2004973.
Wang, J., Pan, L., Tang, S., Ji, J. S., & Shi, X. (2020). Mask use during COVID-19: A risk adjusted strategy. Environmental Pollution, 266(1): 1-6. Disponible en: https://doi.org/10.1016/j.envpol.2020.115099.
Wang, L. V., & Wu, H.-I. (2009). Biomedical Optics. En Biomedical Optics: Principles and Imaging. John Wiley & Sons, Inc. Disponible en: https://doi.org/10.1002/9780470177013.
Weaver, D. T., Card, K., Dinh, M. N., Crozier, D., Dolso, E., Dhawan, A., Nikhil Krishnan, Maltas, J., Dinh, M. N., Dolson, E., Farrokhian, N., Gopalakrishnan, V., Ho, E., Jagdish, T., King, E., Krishnan, N., Kuzmin, G., Maltas, J., Mo, J., … Weaver, D. T. (2020). UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic. medRxiv, 1-18. Disponible en:
https://doi.org/https://doi.org/10.1101/2020.03.25.20043489.
Weiß, N. (2020). UV-Vis Spectrophotometry – Easy and Quick Quantification of Nucleic Acids. Eppendorf Handling Solutions. Disponible en: https://handling-solutions.eppendorf.com/samplehandling/photometry/applications/detailview-applications/news/uv-vis-spectrophotometry-easy-and-quickquantification-of-nucleic-acids/ (Acceso noviembre 2020).
Welch, D., Buonanno, M., Grilj, V., Shuryak, I., Crickmore, C., Bigelow, A. W., Randers-Pehrson, G., Johnson, G. W., & Brenner, D. J. (2018). Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Scientific Reports, 8(1): 1-7. Disponible en: https://doi.org/10.1038/s41598-018-21058-w.
Wharton, J. R., & Cockerell, C. J. (1998). The sun: A friend and enemy. Clinics in Dermatology, 16(4): 415-419. Disponible en: https://doi.org/10.1016/S0738-081X(98)00014-5.Wilches Visbal, J., & Castillo
Pedraza, M. (2020). Aproximación matemática del modelo epidemiológico SIR para la
comprensión de las medidas de contención contra la COVID-19. Revista Española de Salud Pública, 94: e1-11.Disponible en: https://doi.org/23 de septiembre e202009109.
Wilches Visbal, J. H., & Castillo Pedraza, M. C. (2020). Luz ultravioleta lejana para inactivar superficies y aerosoles
contaminados con SARS-CoV2. Hacia la Promoción de la Salud, 25(2): 24-26. Disponible en:
https://doi.org/10.17151/hpsal.2020.25.2.5.
Wilches Visbal, J. H., Castillo Pedraza, M. C., & Serpa Romero, X. Z. (2020). Inactivación potencial del coronavirus SARS-CoV2: ¿qué agentes germicidas se proponen? Revista Cuidarte, 12(1): e1273. Disponible en: https://doi.org/10.15649/cuidarte.1273.
Worldometers. (2020). Reporte Mundial COVID-19. Disponible en: Https://www.worldometers.info/coronavirus/ (Acceso diciembre 2020).
Xenex. (2020). Xenex Introduces the Next Generation of Coronavirus-Killing Robots. Businesswire. Disponible en: https://www.businesswire.com/news/home/20201215005464/en/Xenex-Introduces-the-Next-Generation-ofCoronavirus-Killing-Robots (Acceso diciembre 2020).
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2021 Boletín de Malariología y Salud Ambiental