Luz ultravioleta C: una alternativa eficiente contra la pandemia

Jorge Homero Wilches Visba, Juan José Bandera Barros, Jorge Camilo Méndez Hernández

Resumen


La pandemia por COVID-19 ha generado un impacto negativo en los sistemas de salud y la economía mundial. El agente etiológico de la COVID-19, el SARS-CoV2, puede permanecer de horas a días en superficies y aerosoles, representando un desafío en la descontaminación de objetos y ambientes cerrados. Agentes químicos como el alcohol, peróxido de hidrógeno, hipoclorito de sodio se han empleado con éxito para erradicar al coronavirus de superficies. Dado que estos agentes pueden causar daños en elementos de protección personal (como las máscaras), son irritantes y no parecen ser efectivos para la descontaminación de aerosoles, la luz ultravioleta ha sido explorada como una medida de mitigación para el desconfinamiento seguro. En este trabajo se realiza una revisión acerca de los principios físicos de la irradiación con luz ultravioleta y su interacción con la materia biológica. También se esboza un esquema de irradiación que podría ser útil para eliminar al SARS-CoV2 de superficies y aerosoles en ambientes cerrados.

Palabras clave


ultravioleta; COVID-19, influencia, exposición, irradiación, SARS-CoV2.

Texto completo:

PDF

Referencias


Ahmad, S. I., Christensen, L., & Baron, E. (2017). History of UV Lamps, Types, and Their Applications. En Advances in Experimental Medicine and Biology (Vol. 996: pp. 3-11). Disponible en: https://doi.org/10.1007/978-3-319-56017-5_1.

Arito, H., Takahashi, M., Iwasaki, T., & Uchiyama, I. (1997). Age-related changes in ventilatory and heart rate responses to acute ozone exposure in the conscious rat. Industrial Health, 35(1): 78-86. Disponible en: https://doi.org/10.2486/indhealth.35.78.

Bachmann, L. (2020a). IV Simposio de Fotobiofísica - UV e Virus: Dosimetria Otica de Radiações. Universidade de São Paulo. Disponible en: https://youtu.be/6TtH8f9UiH0 (Acceso marzo 2021).

Bachmann, L. (2020b). IV Simposio de Fotobiofísica - UV e Vírus: uso de UVC em ambientes públicos. Universidade de São Paulo. Disponible en: https://youtu.be/gszFyqaDbaI (Acceso marzo 2021).

Beaudry, M. S., Frederick, J. C., Lott, M. E. J., Norfolk, W. A., Glenn, T. C., & Lipp, E. K. (2020). Effectiveness of an Ozone Disinfecting and Sanitizing Cabinet to Decontaminate a Surrogate Virus for SARS-CoV-2 on N-95. Masks. medRxiv, 2020.11.04.20226233. Disponible en:

https://doi.org/https://doi.org/10.1101/2020.11.04.20226233.

Buonanno, M., Randers-Pehrson, G., Bigelow, A. W., Trivedi, S., Lowy, F. D., Spotnitz, H. M., Hammer, S. M., & Brenner, D. J. (2013). 207-nm UV Light - A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. I: In Vitro Studies. PLoS ONE, 8(10): e76968. Disponible en

https://doi.org/10.1371/journal.pone.0076968.

Buonanno, M., Welch, D., Shuryak, I., & Brenner, D. J. (2020). Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Scientific Reports, 10(1): 10285. Disponible en:

https://doi.org/10.1038/s41598-020-67211-2.

Cabrera Morales, C. M., & López-Nevot, M. A. (2006). Efectos de la radiación ultravioleta (UV) en la inducción de mutaciones de p53 en tumores de piel. Oncología (Barcelona), 29(7): 25-32. Disponible en: https://doi.org/10.4321/S0378-48352006000700003.

Cadet, J., & Douki, T. (2018). Formation of UV-induced DNA damage contributing to skin cancer development. Photochemical & Photobiological Sciences, 17(12): 1816-1841. Disponible

en:https://doi.org/10.1039/C7PP00395A.

Chevrefils, G., Caron, É., Wright, H., & Sakamoto, G. (2006). UV dose required to achieve incremental log inactivation of bacteria, protozoa and viruses. IUVA News, 8(1): 38-45. Disponible en:

https://www.iuvanews.com/stories/pdf/archives/080104Cairns_Article_2006.pdf.

Cooper, G. M., & Hausman, R. (2013). The Cell: A Molecular Approoach (Sinauer Associates (6th ed). Disponible en: https://www.amazon.com/-/es/Geoffrey-M-Cooper/dp/0878939644.

Cornelia, R., & Warburton, P. R. (2017). Assessing hydrogen peroxide vapor exposure from hospital sterilizers. Journal of Occupational and Environmental Hygiene, 14(9): D150-D157. Disponible en:

https://doi.org/10.1080/15459624.2017.1335401.

Darnell, M. E. R., Subbarao, K., Feinstone, S. M., & Taylor, D. R. (2004). Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. Journal of Virological Methods, 121(1): 85-91. Disponible en: https://doi.org/10.1016/j.jviromet.2004.06.006.

Derraik, J. G. B., Anderson, W. A., Connelly, E. A., & Anderson, Y. C. (2020). Rapid Review of SARS-CoV-1 and SARS-CoV-2 Viability, Susceptibility to Treatment, and the Disinfection and Reuse of PPE, Particularly Filtering Facepiece Respirators. International Journal of Environmental Research and Public Health, 17(17):6117. Disponible en: https://doi.org/10.3390/ijerph17176117.

Dimofte, A., Finlay, J. C., & Zhu, T. C. (2005). A method for determination of the absorption and scattering properties interstitially in turbid media. Physics in Medicine and Biology, 50(10): 2291-2311. Disponible en: https://doi.org/10.1088/0031-9155/50/10/008.

Duan, S. M., Zhao, X. S., Wen, R. F., Huang, J. J., Pi, G. H., Zhang, S. X., Han, J., Bi, S. L., Ruan, L., & Dong, X. P. (2003). Stability of SARS Coronavirus in Human Specimens and Environment and Its Sensitivity to Heating and UV Irradiation. Biomedical and Environmental Sciences, 16(3): 246-255. Disponible en: https://pubmed.ncbi.nlm.nih.gov/14631830/.

Fernandez-Oliveras, A., Rubino, M., & Perez, M. M. (2013). Scattering and absorption properties of biomaterials for dental restorative applications. Journal of the European Optical Society: Rapid Publications, 8: 13056. Disponible en: https://doi.org/10.2971/jeos.2013.13056.

García de Abajo, F. J., Hernández, R. J., Kaminer, I., Meyerhans, A., Rosell-Llompart, J., & Sanchez-Elsner, T. (2020). Back to Normal: An Old Physics Route to Reduce SARS-CoV-2 Transmission in Indoor Spaces. ACS Nano, 14(7): 7704-7713. Disponible en: https://doi.org/10.1021/acsnano.0c04596.

Gorbunov, B. (2020). Aerosol particles laden with COVID-19 travel over 30m distance. Preprints, 1-18. Disponible en: https://doi.org/10.20944/preprints202004.0546.v2.

Heilingloh, C. S., Aufderhorst, U. W., Schipper, L., Dittmer, U., Witzke, O., Yang, D., Zheng, X., Sutter, K., Trilling, M., Alt, M., Steinmann, E., & Krawczyk, A. (2020). Susceptibility of SARS-CoV-2 to UV irradiation. American Journal of Infection Control, 48(10): 1273-1275. Disponible en: https://doi.org/10.1016/j.ajic.2020.07.031.

Heßling, M., Hönes, K., Vatter, P., & Lingenfelder, C. (2020). Ultraviolet irradiation doses for coronavirus inactivation - review and analysis of coronavirus photoinactivation studies. GMS hygiene and infection control, 15: 1-8.Disponible en: https://doi.org/10.3205/dgkh000343.

Horton, L., Torres, A. E., Narla, S., Lyons, A. B., Kohli, I., Gelfand, J. M., Ozog, D. M., Hamzavi, I. H., & Lim, H. W. (2020). Spectrum of virucidal activity from ultraviolet to infrared radiation. Photochemical & Photobiological Sciences, 19(10): 1262-1270. Disponible en: https://doi.org/10.1039/D0PP00221F.

Kannan, S., Subbaram, K., Ali, S., & Kannan, H. (2020). Molecular Characterization and Amino Acid Homology of Nucleocapsid (N) Protein in SARS-CoV-1, SARS-CoV-2, MERS-CoV, and Bat Coronavirus. Journal of Pure and Applied Microbiology, 14(suppl 1): 757-763. Disponible en: https://doi.org/10.22207/JPAM.14.SPL1.13.

Kenney, P., Chan, B., Kortright, K., Cintron, M., Havill, N., Russi, M., Epright, J., Lee, L., Balcezak, T., & Martinello, R. (2020). Hydrogen Peroxide Vapor sterilization of N95 respirators for reuse. Preprints, 617: 1-6. Disponible en: https://doi.org/10.1101/2020.03.24.20041087.

Kim, S.-J., Kim, D.-K., & Kang, D.-H. (2016). Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese. Applied and Environmental Microbiology, 82(1): 11-17. Disponible en: https://doi.org/10.1128/AEM.02092-15.

Lin, L., Cook, D. N., Wiesehahn, G. P., Alfonso, R., Behrman, B., Cimino, G. D., Corten, L., Damonte, P. B., Dikeman, R., Dupuis, K., Fang, Y. M., Hanson, C. V., Hearst, J. E., Lin, C. Y., Londe, H. F., Metchette, K., Nerio, A. T., Pu, J. T., Reames, A. A., … Corash, L. (1997). Photochemical inactivation of viruses and bacteria in platelet concentrates by use of a novel psoralen and long-wavelength ultraviolet light. Transfusion, 37(4): 423-435. Disponible en: https://doi.org/10.1046/j.1537-2995.1997.37497265344.x.

Mackenzie, D. (2020). Ultraviolet Light Fights New Virus. Engineering, 6(8), 851-853. Disponible en:

https://doi.org/10.1016/j.eng.2020.06.009.

Matrajt, L., & Leung, T. (2020). Evaluating the Effectiveness of Social Distancing Interventions to Delay or Flatten the Epidemic Curve of Coronavirus Disease. Emerging Infectious Diseases, 26(8): 1740-1748. Disponible en: https://doi.org/10.3201/eid2608.201093.

Matthes, R. (2004). Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Physics, 87(2): 171-186. Disponible en:

https://doi.org/10.1097/00004032-200408000-00006.

Mbonimpa, E. G., Blatchley, E. R., Applegate, B., & Harper, W. F. (2018). Ultraviolet A and B wavelength-dependent inactivation of viruses and bacteria in the water. Journal of Water and Health, 16(5): 796-806. Disponible en: https://doi.org/10.2166/wh.2018.071.

Mishra, B. (2020). Is ‘FAR UVC’ the Nearest Solution for Pandemic Containment? Journal of Advanced Research in Medical Science & Technology, 7(03): 27-31. Disponible en: https://doi.org/10.24321/2394.6539.202014.

Mittal, R., Ni, R., & Seo, J.-H. (2020). The flow physics of COVID-19. Journal of Fluid Mechanics, 894: F2-1-F2-14. https://doi.org/10.1017/jfm.2020.330.

Naunovic, Z., Lim, S., & Blatchley, E. R. (2008). Investigation of microbial inactivation efficiency of a UV disinfection system employing an excimer lamp. Water Research, 42(19): 4838-4846. Disponible en: https://doi.org/10.1016/j.watres.2008.09.001.

Pavez Ulloa, F. J. (2009). Agentes físicos superficiales y dolor. Análisis de su eficacia a la luz de la evidencia científica. Revista de la Sociedad Española del Dolor, 16(3): 182-189. Disponible en: https://doi.org/10.1016/S1134-8046(09)71009-2.

Rauth, A. M. (1965). The Physical State of Viral Nucleic Acid and the Sensitivity of Viruses to Ultraviolet Light. Biophysical Journal, 5(3): 257-273. Disponible en: https://doi.org/10.1016/S0006-3495(65)86715-7.

Saini, V., Sikri, K., Batra, S. D., Kalra, P., & Gautam, K. (2020). Development of a highly effective low-cost vaporized hydrogen peroxide-based method for disinfection of personal protective equipment for their selective reuse during pandemics. Gut Pathogens, 12(1): 1-11. Disponible en: https://doi.org/10.1186/s13099-020-00367-4.

Schalk, S., Adam, V., Arnold, E., & Brieden, K. (2006). UV-lamps for disinfection and advanced oxidation–Lamp types, technologies and applications. IUVA news, 8(1): 32-37. Disponible en:

http://iuva.org/sites/default/files/member/news/IUVA_news/Vol08/Issue1/SchalkArticleIUVANewsVol8No1.pdf.

Schmid, F.-X. (2001). Biological Macromolecules: UV-visible Spectrophotometry. En Encyclopedia of Life Sciences (p. 4). John Wiley & Sons, Ltd. Disponible en: https://doi.org/10.1038/npg.els.0003142.

Seminara, G., Carli, B., Forni, G., Fuzzi, S., Mazzino, A., & Rinaldo, A. (2020). Biological fluid dynamics of airborne COVID-19 infection. Rendiconti Lincei. Scienze Fisiche e Naturali, 31(3): 505-537. Disponible en: https://doi.org/10.1007/s12210-020-00938-2.

Simmons, S. E., Carrion, R., Alfson, K. J., Staples, H. M., Jinadatha, C., Jarvis, W. R., Sampathkumar, P., Chemaly, R. F., Khawaja, F., Povroznik, M., Jackson, S., Kaye, K. S., Rodriguez, R. M., & Stibich, M. A. (2021). Deactivation of SARS-CoV-2 with pulsed-xenon ultraviolet light: Implications for environmental COVID-19 control. Infection Control & Hospital Epidemiology, 42(2): 127-130. Disponible en: https://doi.org/10.1017/ice.2020.399.

Tseng, C.-C., & Li, C.-S. (2005). Inactivation of Virus-Containing Aerosols by Ultraviolet Germicidal Irradiation. Aerosol Science and Technology, 39(12): 1136-1142. Disponible en:

https://doi.org/10.1080/02786820500428575.

Van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., & Munster, V. J. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. New England Journal of Medicine, 382(16): 1564-1567. Disponible en: https://doi.org/10.1056/NEJMc2004973.

Wang, J., Pan, L., Tang, S., Ji, J. S., & Shi, X. (2020). Mask use during COVID-19: A risk adjusted strategy. Environmental Pollution, 266(1): 1-6. Disponible en: https://doi.org/10.1016/j.envpol.2020.115099.

Wang, L. V., & Wu, H.-I. (2009). Biomedical Optics. En Biomedical Optics: Principles and Imaging. John Wiley & Sons, Inc. Disponible en: https://doi.org/10.1002/9780470177013.

Weaver, D. T., Card, K., Dinh, M. N., Crozier, D., Dolso, E., Dhawan, A., Nikhil Krishnan, Maltas, J., Dinh, M. N., Dolson, E., Farrokhian, N., Gopalakrishnan, V., Ho, E., Jagdish, T., King, E., Krishnan, N., Kuzmin, G., Maltas, J., Mo, J., … Weaver, D. T. (2020). UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic. medRxiv, 1-18. Disponible en:

https://doi.org/https://doi.org/10.1101/2020.03.25.20043489.

Weiß, N. (2020). UV-Vis Spectrophotometry – Easy and Quick Quantification of Nucleic Acids. Eppendorf Handling Solutions. Disponible en: https://handling-solutions.eppendorf.com/samplehandling/photometry/applications/detailview-applications/news/uv-vis-spectrophotometry-easy-and-quickquantification-of-nucleic-acids/ (Acceso noviembre 2020).

Welch, D., Buonanno, M., Grilj, V., Shuryak, I., Crickmore, C., Bigelow, A. W., Randers-Pehrson, G., Johnson, G. W., & Brenner, D. J. (2018). Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Scientific Reports, 8(1): 1-7. Disponible en: https://doi.org/10.1038/s41598-018-21058-w.

Wharton, J. R., & Cockerell, C. J. (1998). The sun: A friend and enemy. Clinics in Dermatology, 16(4): 415-419. Disponible en: https://doi.org/10.1016/S0738-081X(98)00014-5.Wilches Visbal, J., & Castillo

Pedraza, M. (2020). Aproximación matemática del modelo epidemiológico SIR para la

comprensión de las medidas de contención contra la COVID-19. Revista Española de Salud Pública, 94: e1-11.Disponible en: https://doi.org/23 de septiembre e202009109.

Wilches Visbal, J. H., & Castillo Pedraza, M. C. (2020). Luz ultravioleta lejana para inactivar superficies y aerosoles

contaminados con SARS-CoV2. Hacia la Promoción de la Salud, 25(2): 24-26. Disponible en:

https://doi.org/10.17151/hpsal.2020.25.2.5.

Wilches Visbal, J. H., Castillo Pedraza, M. C., & Serpa Romero, X. Z. (2020). Inactivación potencial del coronavirus SARS-CoV2: ¿qué agentes germicidas se proponen? Revista Cuidarte, 12(1): e1273. Disponible en: https://doi.org/10.15649/cuidarte.1273.

Worldometers. (2020). Reporte Mundial COVID-19. Disponible en: Https://www.worldometers.info/coronavirus/ (Acceso diciembre 2020).

Xenex. (2020). Xenex Introduces the Next Generation of Coronavirus-Killing Robots. Businesswire. Disponible en: https://www.businesswire.com/news/home/20201215005464/en/Xenex-Introduces-the-Next-Generation-ofCoronavirus-Killing-Robots (Acceso diciembre 2020).


Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2021 Boletín de Malariología y Salud Ambiental